Managing Heterogeneous Theories within a Mathematical Knowledge Repository

  • Adam Grabowski
  • Markus Moschner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3119)


The problem of the integrity of a computer managed mathematical knowledge repository is in the heart of MKM since mathematical vernacular is a language permitting plenty of ways in expressing the same meaning. The users of the library are naturally forced to choose certain way among many similar ones, unless different approaches are provided by developers. Mizar is a system for formalizing mathematical content which is sufficient mature and flexible for a coexistence of different approaches of concrete subjects. Considering Mizar formalizations of ortholattice theory we discuss a useful mechanism of coping with the heterogeneity of theories in a library of mathematical facts.


Boolean Algebra Mathematical Knowledge Knowledge Repository Proof Checker Formal Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bancerek, G.: On the structure of Mizar types. In: Geuvers, H., Kamareddine, F. (eds.) Proc. of MLC 2003. ENTCS, vol. 85(7) (2003)Google Scholar
  2. 2.
    Bancerek, G.: Development of the theory of continuous lattices in Mizar. In: Kerber, M., Kohlhase, M. (eds.) Proceedings of the Symposium on Calculemus 2000, pp. 65–80 (2001)Google Scholar
  3. 3.
    Buchberger, B.: Mathematical Knowledge Management in Theorema. In: Buchberger, B., Caprotti, O. (eds.) Proceedings of MKM 2001, Linz, Austria (2001)Google Scholar
  4. 4.
    Constable, R.L.: Steps toward a World Wide Digital Library of Formal Mathematics. In: MKM Symposium, Edinburgh, UK (2003)Google Scholar
  5. 5.
    Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the Constructive Coq Repository at Nijmegen,
  6. 6.
    Davenport, J.: Mathematical knowledge representation. In: Buchberger, B., Caprotti, O. (eds.) Proceedings of MKM 2001, Linz, Austria (2001)Google Scholar
  7. 7.
    Farmer, W., Guttman, J., Thayer, F.: Little theories. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992)Google Scholar
  8. 8.
    Giuntini, R.: Quantum Logic and Hidden Variables, Bibliographisches Institute, Mannheim (1991)Google Scholar
  9. 9.
    Grabowski, A.: Robbins algebras vs. Boolean algebras. Formalized Mathematics 9(4), 681–690 (2001)zbMATHGoogle Scholar
  10. 10.
    Grabowski, A., Moschner, M.: Formalization of ortholattices via orthoposets. Formalized Mathematics (to appear, 2004)Google Scholar
  11. 11.
    Grätzer, G.: General Lattice Theory. Academic Press, New York (1978)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kozarkiewicz, V., Grabowski, A.: Axiomatization of lattices in terms of the Sheffer stroke. Formalized Mathematics (to appear, 2004)Google Scholar
  13. 13.
    McCune, W.: Solution of the Robbins problem. Journal of Automated Reasoning 19, 263–276 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    The Mizar Home Page,
  15. 15.
    Moschner, M.: Basic notions and properties of orthoposets. Formalized Mathematics 11(2), 201–210 (2003)Google Scholar
  16. 16.
    Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  17. 17.
    Prevosto, V., Jaume, M.: Making proofs in a hierarchy of mathematical structures. In: Hardin, T., Rioboo, R. (eds.) Proceedings of Calculemus 2003, Rome, Italy (2003)Google Scholar
  18. 18.
    Rudnicki, P., Trybulec, A.: Mathematical Knowledge Management in Mizar. In: Buchberger, B., Caprotti, O. (eds.) Proceedings of MKM 2001, Linz, Austria (2001)Google Scholar
  19. 19.
    Rudnicki, P., Trybulec, A.: On the integrity of a repository of formalized mathematics. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 162–174. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Urban, J.: MPTP 0.1. In: Dahn, I., Vigneron, L. (eds.) Proc. of FTP 2003. ENTCS, vol. 86(1) (2003)Google Scholar
  21. 21.
    Wenzel, M.: Lattices and orders in Isabelle/HOL,
  22. 22.
    Wiedijk, F.: Formal proof sketches,

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Adam Grabowski
    • 1
  • Markus Moschner
    • 2
  1. 1.Institute of MathematicsUniversity of BiałystokBiałystokPoland
  2. 2.Department of StatisticsUniversity of ViennaViennaAustria

Personalised recommendations