Advertisement

Robust Registration of 3-D Ultrasound Images Based on Gabor Filter and Mean-Shift Method

  • Feng Cen
  • Yifeng Jiang
  • Zhijun Zhang
  • H. T. Tsui
  • T. K. Lau
  • Hongning Xie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3117)

Abstract

A novel robust method is presented for the registration of 3-D ultrasound images. The proposed method improves the performance of the voxel property-based affine registration in two aspects. First, a set of wavelet-like Gabor filters is used to extract the texture and edge features of the voxels. By using these features, the smoothness of the similarity function in large scale can be improved. Furthermore, adopting edge information can improve the registration accuracy. Second, a robust maximization method based on the mean-shift algorithm and Powell’s direction set method is proposed. The implicitly embedded smoothing process of the mean-shift algorithm can effectively remove the local fluctuation of the similarity function and significantly improve the robustness of optimization. Experimental results demonstrate the robust and accurate performance of the proposed method in the registration of 3-D ultrasound fetal head images.

Keywords

Ultrasound Image Gabor Filter Speckle Noise Edge Feature Nonrigid Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shekhar, R., Zagrodsky, V.: Mutual Imformation-Based Rigid and Nonrigid Registration of Ultrasound Volumes. IEEE Trans. Medical Imaging 21(1), 9–22 (2002)CrossRefGoogle Scholar
  2. 2.
    Rohling, R.N., Gee, A.H., Berman, L.: Automatic Registration of 3-D Ultrasound Images. Ultrasound Med. Biol. 24, 841–854 (1998)CrossRefGoogle Scholar
  3. 3.
    Meyer, C.R., Boes, J.L., Kim, B., Bland, P.H., Lecarpentier, G.L., Fowlkes, J.B., Roubidoux, M.A., Carson, P.L.: Semiautomatic Registration of Volumetric Ultrasound Scans. Ultrasound Med. Biol. 25, 339–347 (1999)CrossRefGoogle Scholar
  4. 4.
    Xiao, G., Brady, M., Noble, J.A., Burcher, M., English, R.: Nonrigid Registration of 3-D Free-Hand Ultrasound Images of the Breast. IEEE Trans. Medical Imaging 21(4), 405–412 (2002)CrossRefGoogle Scholar
  5. 5.
    Gee, A.H., Treece, G.M., Prager, R.W., Cash, C.J.C., Berman, L.: Rapid Registration for Wide Field of View Freehand Tree-Dimensional Ultrasound. IEEE Trans. Medical Imaging 22(11), 1344–1357 (2003)CrossRefGoogle Scholar
  6. 6.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C, 2nd edn. Cambridge Univ. Press, Cambridge (1992)zbMATHGoogle Scholar
  7. 7.
    Clausi, D.A., Jernigan, M.E.: Designing Gabor Filters for Optimal Texture Separability. Pattern Recognition 33, 1835–1849 (1999)CrossRefGoogle Scholar
  8. 8.
    Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel Texture Analysis Using Localized Spatial Filters. IEEE Trans. Pattern Anal. Machine Intell. 12(1), 55–73 (1990)CrossRefGoogle Scholar
  9. 9.
    Chen, C.M., Lu, H.H., Han, K.: A Textural Approach Based on Gabor Functions for Texture Edge Detection in Ultrasound Images. Ultrasound Med. Biol. 27(4), 515–534 (2001)CrossRefGoogle Scholar
  10. 10.
    Shen, D., Zhan, Y., Davatzikos, C.: Segmentation of Prostate Boundaries from Ultrasound Images Using Statistical Shape Model. IEEE Trans. Medical Imaging 22(4), 539–551 (2003)CrossRefGoogle Scholar
  11. 11.
    Roche, A., Malandain, G., Pennec, X., Ayache, N.: The Correlation Ratio as a New Similarity Measure for Multimodal Image Registration. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1115–1124. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality Image Registration by Maximization of Mutual Information. IEEE Trans. Medical Imaging 16(2), 187–197 (1997)CrossRefGoogle Scholar
  13. 13.
    Cheng, Y.: Mean Shift, Mode Seeking, and Clustering. IEEE Trans. Pattern Anal. Machine Intell. 17(8), 790–799 (1995)CrossRefGoogle Scholar
  14. 14.
    Roche, A., Malandain, G., Ayache, N.: Unifying Maximum Likelihood Approaches in Medical Image Registration. International Journal of Imaging Systems and Technology: Special Issue on 3D Imaging 11(1), 71–80 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Feng Cen
    • 1
  • Yifeng Jiang
    • 1
  • Zhijun Zhang
    • 1
  • H. T. Tsui
    • 1
  • T. K. Lau
    • 2
  • Hongning Xie
    • 3
  1. 1.Department of Electronic EngineeringThe Chinese University of Hong KongShatin, NT, Hong Kong
  2. 2.Department of Obstetrics and GynaecologyThe Chinese University of Hong KongShatin, NT, Hong Kong
  3. 3.First Affiliated HospitalSun Yet-sen UniversityGuangzhouChina

Personalised recommendations