Advertisement

Proving More Properties with Bounded Model Checking

  • Mohammad Awedh
  • Fabio Somenzi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3114)

Abstract

Bounded Model Checking, although complete in theory, has been thus far limited in practice to falsification of properties that were not invariants. In this paper we propose a termination criterion for all of LTL, and we show its effectiveness through experiments. Our approach is based on converting the LTL formula to a Büchi automaton so as to reduce model checking to the verification of a fairness constraint. This reduction leads to one termination criterion that applies to all formulae. We also discuss cases for which a dedicated termination test improves bounded model checking efficiency.

Keywords

Model Check Termination Criterion Simple Path Atomic Proposition Propositional Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21, 181–185 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Biere, A., Cimatti, E.: Symbolic model checking without bDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Brayton, R.K., et al.: VIS: A system for verification and synthesis. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Cimatti, A., Pistore, M., Roveri, M., Sebastiani, R.: Improving the encoding of LTL model checking into SAT. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 196–207. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Clarke, E., Grumberg, O., McMillan, K., Zhao, X.: Efficient generation of counterexamples and witnesses in symbolic model checking. In: Proceedings of the Design Automation Conference, San Francisco, CA, June 1995, pp. 427–432 (1995)Google Scholar
  6. 6.
    Clarke, E., Kröning, D., Ouaknine, J., Strichman, O.: Completeness and complexity of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 85–96. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    de Moura, L., Rueß, H., Sorea, M.: Bounded model checking and induction: From refutation to verification. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 14–26. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Kröning, D., Strichman, O.: Efficient computation of recurrence diameters. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 298–309. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy their linear specification. In: Proceedings of the Twelfth Annual ACM Symposium on Principles of Programming Languages, New Orleans, January 1985, pp. 97–107 (1985)Google Scholar
  10. 10.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Moskewicz, M., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of the Design Automation Conference, Las Vegas, NV, June 2001, pp. 530–535 (2001)Google Scholar
  12. 12.
    Ravi, K., Bloem, R., Somenzi, F.: A comparative study of symbolic algorithms for the computation of fair cycles. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 143–160. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Schuppan, V., Biere, A.: Efficient reduction of finite state model checking to reachability analysis. Software Tools for Technology Transfer 5(2–3), 185–204 (2004)CrossRefGoogle Scholar
  14. 14.
    Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 108–125. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Sistla, P.: Safety, liveness and fairness in temporal logic. Formal Aspects in Computing 6, 495–511 (1994)zbMATHCrossRefGoogle Scholar
  16. 16.
    Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proceedings of the First Symposium on Logic in Computer Science, pp. 322–331, Cambridge, UK (June 1986)Google Scholar
  18. 18.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Mohammad Awedh
    • 1
  • Fabio Somenzi
    • 1
  1. 1.University of Colorado at Boulder 

Personalised recommendations