Reversal Distance without Hurdles and Fortresses

  • Anne Bergeron
  • Julia Mixtacki
  • Jens Stoye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3109)


This paper presents an elementary proof of the Hannenhalli-Pevzner theorem on the reversal distance of two signed permutations. It uses a single PQ-tree to encode the various features of a permutation. The parameters called hurdles and fortress are replaced by a single one, whose value is computed by a simple and efficient algorithm.


Short Path Maximal Chain Elementary Proof Short Branch Unoriented Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergeron, A.: A very elementary presentation of the hannenhalli-pevzner theory. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 106–117. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Bergeron, A., Heber, S., Stoye, J.: Common intervals and sorting by reversals: A marriage of necessity. Bioinformatics 18(Suppl. 2) ,S54–S63 (2002) ; Proceedings of ECCB 2002Google Scholar
  3. 3.
    Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Hannenhalli, S.: Polynomical algorithm for computing translocation distance between genomes. Discrete Appl. Math. 71(1-3), 137–151 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem. In: Proceedings of FOCS 1995, pp. 581–592. IEEE Press, Los Alamitos (1995)Google Scholar
  7. 7.
    Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kaplan, H., Shamir, R., Tarjan, R.E.: A faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. Computing 29(3), 880–892 (1999)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kececioglu, J.D., Sankoff, D.: Efficient bounds for oriented chromosome inversion distance. In: Crochemore, M., Gusfield, D. (eds.) CPM 1994. LNCS, vol. 807, pp. 307–325. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Berman, P., Hannenhalli, S.: Fast sorting by reversal. In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 168–185. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Anne Bergeron
    • 1
  • Julia Mixtacki
    • 2
  • Jens Stoye
    • 3
  1. 1.LaCIM, Université du Québec à MontréalCanada
  2. 2.Fakultät für Mathematik, Universität BielefeldGermany
  3. 3.Technische Fakultät, Universität BielefeldGermany

Personalised recommendations