Polynomial-Time Algorithms for the Ordered Maximum Agreement Subtree Problem

  • Anders Dessmark
  • Jesper Jansson
  • Andrzej Lingas
  • Eva-Marta Lundell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3109)


For a set of rooted, unordered, distinctly leaf-labeled trees, the NP-hard maximum agreement subtree problem (MAST) asks for a tree contained (up to isomorphism or homeomorphism) in all of the input trees with as many labeled leaves as possible. We study the ordered variants of MAST where the trees are uniformly or non-uniformly ordered. We provide the first known polynomial-time algorithms for the uniformly and non-uniformly ordered homeomorphic variants as well as the uniformly and non-uniformly ordered isomorphic variants of MAST. Our algorithms run in time O(kn 3), O(n 3 min { nk, n + log k − 1 n }), O(kn 3), and O((k+n)n 3), respectively, where n is the number of leaf labels and k is the number of input trees.


Mast Problem Input Tree Lower Common Ancestor Unordered Tree Dynamic Programming Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)zbMATHGoogle Scholar
  2. 2.
    Amir, A., Keselman, D.: Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary trees: Metrics and efficient algorithms. SIAM J. Computing 26(6), 1656–1669 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bodlaender, H., Downey, R., Fellows, M., Wareham, T.: The parameterized complexity of sequence alignment and consensus. Theor. Comput. Sci. 147, 31–54 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bonizzoni, P., Della Vedova, G., Mauri, G.: Approximating the maximum isomorphic agreement subtree is hard. International Journal of Foundations of Computer Science 11(4), 579–590 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bryant, D.: Building Trees, Hunting for Trees, and Comparing Trees: Theory and Methods in Phylogenetic Analysis. PhD thesis, University of Canterbury (1997) Google Scholar
  6. 6.
    Farach, M., Przytycka, T., Thorup, M.: On the agreement of many trees. Information. Processing Letters 55, 297–301 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fellows, M., Hallett, M., Stege, U.: Analogs & duals of the MAST problem for sequences & trees. Journal of Algorithms 49(1), 192–216 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Felsner, S., Müller, R., Wernisch, L.: Trapezoid graphs and generalizations, geometry and algorithms. Discrete Applied Mathematics 74, 13–32 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ga̧sieniec, L., Jansson, J., Lingas, A., Östlin, A.: Inferring ordered trees from local constraints. In: proceedings of CATS 1998 Australian Computer Science Communications, vol. 20(3), pp. 67–76. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Ga̧sieniec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing evolutionary trees. Journal of Combinatorial Optimization 3, 183–197 (1999)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Discrete Applied Mathematics 71, 153–169 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kao, M.-Y., Lam, T.-W., Sung, W.-K., Ting, H.-F.: An even faster and more unifying algorithm for comparing trees via unbalanced bipartite matchings. Journal of Algorithms 40(2), 212–233 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Maier, D.: The complexity of some problems on subsequences and supersequences. Journal of the ACM 25(2), 322–336 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Smolenskii, E.A.: Jurnal Vicisl. Mat. i Matem. Fiz 2, 371–372 (1962)MathSciNetGoogle Scholar
  15. 15.
    Steel, M., Warnow, T.: Kaikoura tree theorems: Computing the maximum agreement subtree. Information Processing Letters 48, 77–82 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sung, W.-K.: Fast Labeled Tree Comparison via Better Matching Algorithms. PhD thesis, University of Hong Kong (1998) Google Scholar
  17. 17.
    Timkovsky, V.G.: Complexity of common subsequence and supersequence problems and related problems. Cybernetics 25, 1–13 (1990)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Anders Dessmark
    • 1
  • Jesper Jansson
    • 1
  • Andrzej Lingas
    • 1
  • Eva-Marta Lundell
    • 1
  1. 1.Department of Computer ScienceLund UniversityLundSweden

Personalised recommendations