A Trie-Based Approach for Compacting Automata

  • Maxime Crochemore
  • Chiara Epifanio
  • Roberto Grossi
  • Filippo Mignosi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3109)

Abstract

We describe a new technique for reducing the number of nodes and symbols in automata based on tries. The technique stems from some results on anti-dictionaries for data compression and does not need to retain the input string, differently from other methods based on compact automata. The net effect is that of obtaining a lighter automaton than the directed acyclic word graph (DAWG) of Blumer et al., as it uses less nodes, still with arcs labeled by single characters.

Keywords

Automata and formal languages suffix tree factor and suffix automata index text compression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search. Comm. ACM 18(6), 333–340 (1975)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Béal, M.-P.: Codage Symbolique, Masson (1993)Google Scholar
  3. 3.
    Béal, M.-P., Mignosi, F., Restivo, A.: Minimal Forbidden Words and Symbolic Dynamics. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.: The Smallest Automaton Recognizing the Subwords of a Text. Theoretical Computer Science 40(1), 31–55 (1985)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Crochemore, M.: Reducing space for index implementation. Theoretical Computer Science 292(1), 185–197 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Crochemore, M., Mignosi, F., Restivo, A.: Automata and forbidden words. Information Processing Letters 67(3), 111–117 (1998)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Crochemore, M., Mignosi, F., Restivo, A., Salemi, S.: Data compression using antidictonaries. In: Storer, J. (ed.) Special issue Lossless data, compressionProceedings of the IEEE, vol.88 pp. 1756–1768 (2000)Google Scholar
  8. 8.
    Crochemore, M., Vérin, R.: Direct Construction of Compact Directed Acyclic Word Graphs. In: Hein, J., Apostolico, A. (eds.) CPM 1997. LNCS, vol.1264, pp. 116–129. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Diekert, V., Kobayashi, Y.: Some identities related to automata, determinants, and Möbius functions, Report 1997/05, Fakultät Informatik, Universität Stuttgart. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol.1046, pp. 555–566. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Durgan, B.K.: Compact searchable static binary trees. Information Processing Letters 89, 49–52 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Holub, J.: Personal Communication (1999)Google Scholar
  12. 12.
    Holub, J., Crochemore, M.: On the implementation of compact dAWG’s. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 289–294. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Inenaga, S., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S., Mauri, G., Pavesi, G.: On-Line Construction of Compact Directed Acyclic Word Graphs .To appear in Discrete Applied Mathematics (special issue for (CPM 2001) (2001)Google Scholar
  14. 14.
    Inenaga, S., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S., Mauri, G., Pavesi, G.: On-line construction of compact directed acyclic word graphs. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 169–180. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Lothaire, M.: Algebraic Combinatorics on Words. In: Encyclopedia of Mathematics and its Applications, vol. 90, Cambridge University Press, Cambridge (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Maxime Crochemore
    • 1
  • Chiara Epifanio
    • 2
  • Roberto Grossi
    • 3
  • Filippo Mignosi
    • 2
  1. 1.Institut Gaspard-Monge, Université de Marne-la-Vallée, France and King’s College (London)Great Britain
  2. 2.Dipartimento di Matematica e ApplicazioniUniversità di PalermoItaly
  3. 3.Dipartimento di InformaticaUniversità di PisaItaly

Personalised recommendations