Advertisement

Linkable Spontaneous Anonymous Group Signature for Ad Hoc Groups

  • Joseph K. Liu
  • Victor K. Wei
  • Duncan S. Wong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3108)

Abstract

We present a linkable spontaneously anonymous group (LSAG) signature scheme (alternatively known as linkable ring signature scheme) satisfying the following three properties. (1) Anonymity, or signer indistinguishability. (2) Linkability: That two signatures by the same signer can be linked. (3) Spontaneity: No group secret, therefore no group manager or group secret sharing setup. We reduce the security of our scheme to well-known problems under the random oracle model. Using the scheme, we construct a new efficient one-round e-voting system which does not have a registration phase. We also present a new efficient reduction of famous rewind simulation lemma which only relies on elementary probability theory. Threshold extensions of our scheme are also presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proc. 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  3. 3.
    Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups (2002), full version http://www.di.ens.fr/~bresson
  5. 5.
    Camenisch, J.: Efficient and generalized group signatures. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 465–479. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM 24(2), 84–88 (1981)CrossRefGoogle Scholar
  8. 8.
    Chaum, D., Van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  9. 9.
    Chen, L., Pedersen, T.: New group signature schemes. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 171–181. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. 10.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale election. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–260. Springer, Heidelberg (1993)Google Scholar
  12. 12.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attack. SIAM J. Computing 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lee, B., Kim, K.: Receipt-free electronic voting scheme with a tamper-resistant randomizer. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 389–406. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups. Cryptology ePrint Archive, Report 2004/027 (2004), http://eprint.iacr.org/
  15. 15.
    Liu, J.K., Wei, V.K., Wong, D.S.: A separable threshold ring signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 12–26. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–369. Springer, Heidelberg (1998)Google Scholar
  17. 17.
    Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Wong, D., Fung, K., Liu, J., Wei, V.: On the RS-code construction of ring signature schemes and a threshold setting of RST. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 34–46. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Zhang, F., Kim, K.: ID-Based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Joseph K. Liu
    • 1
  • Victor K. Wei
    • 1
  • Duncan S. Wong
    • 2
  1. 1.Department of Information EngineeringThe Chinese University of Hong KongShatin, Hong Kong
  2. 2.Department of Computer ScienceCity University of Hong KongKowloon, Hong Kong

Personalised recommendations