Advertisement

The Worst-Case Time Complexity for Generating All Maximal Cliques

  • Etsuji Tomita
  • Akira Tanaka
  • Haruhisa Takahashi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3106)

Abstract

We present a depth-first search algorithm for generating all maximal cliques of an undirected graph, in which pruning methods are employed as in Bron and Kerbosch’s algorithm. All maximal cliques generated are output in a tree-like form. Then we prove that its worst-case time complexity is O(3 n/3) for an n-vertex graph. This is optimal as a function of n, since there exist up to 3 n/3 cliques in an n-vertex graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akutsu, T., Hayashida, M., Tomita, E., Suzuki, J., Horimoto, K.: Protein threading with profiles and constraints. In: Proc. IEEE Symp. on Bioinformatics and Bioengineering (2004) (to appear)Google Scholar
  2. 2.
    Bahadur, D., Akutsu, K.C.T., Tomita, E., Seki, T., Fujiyama, A.: Point matching under non-uniform distortions and protein side chain packing based on efficient maximum clique algorithms. Genome Informatics 13, 143–152 (2002)Google Scholar
  3. 3.
    Bahadur, D., Akutsu, K.C.T., Tomita, E., Seki, T.: Protein side-chain packing: A maximum edge weight clique algorithmic approach. In: Proc. Asia-Pacific Bioinformatics Conf., pp. 191–200 (2004)Google Scholar
  4. 4.
    Bomze, M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization Supplement vol. A, pp. 1–74. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  5. 5.
    Bron, C., Kerbosch, J.: Algorithm 457, Finding all cliques of an undirected graph, Comm. ACM 16, 575–577 (1973)zbMATHCrossRefGoogle Scholar
  6. 6.
    Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput 14, 210–223 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc. 125, 11853–11865 (2003)CrossRefGoogle Scholar
  8. 8.
    Kobayashi, S., Kondo, T., Okuda, K., Tomita, E.: Extracting globally structure free sequences by local structure freeness. In: Proc. DNA9, p. 206 (2003)Google Scholar
  9. 9.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets, NP-hardness and polynomial-time algorithms. SIAM J. Comput. 9, 558–565 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mohseni-Zadeh, S., Louis, A., Brézellec, P., Risler, J.-L.: PHYTOPROT: a database of clusters of plant proteins. Nucleic Acids Res. 32, D351–D353 (2004)CrossRefGoogle Scholar
  11. 11.
    Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maximum clique. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 278–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Tomita, E., Tanaka, A., Takahashi, H.: An optimal algorithm for finding all the cliques, Technical Report of IPSJ, 1989-AL-12, pp. 91–98 (1989)Google Scholar
  14. 14.
    Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6, 505–517 (1977)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Etsuji Tomita
    • 1
  • Akira Tanaka
    • 1
  • Haruhisa Takahashi
    • 1
  1. 1.Department of Information and Communication EngineeringThe University of Electro-CommunicationsTokyoJapan

Personalised recommendations