Advertisement

A Partition Model of Granular Computing

  • Yiyu Yao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3100)

Abstract

There are two objectives of this chapter. One objective is to examine the basic principles and issues of granular computing. We focus on the tasks of granulation and computing with granules. From semantic and algorithmic perspectives, we study the construction, interpretation, and representation of granules, as well as principles and operations of computing and reasoning with granules. The other objective is to study a partition model of granular computing in a set-theoretic setting. The model is based on the assumption that a finite set of universe is granulated through a family of pairwise disjoint subsets. A hierarchy of granulations is modeled by the notion of the partition lattice. The model is developed by combining, reformulating, and reinterpreting notions and results from several related fields, including theories of granularity, abstraction and generalization (artificial intelligence), partition models of databases, coarsening and refining operations (evidential theory), set approximations (rough set theory), and the quotient space theory for problem solving.

Keywords

Belief Function Fuzzy Measure Partition Model Information Granulation Granular Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldenderfer, M.S., Blashfield, R.K.: Cluster Analysis. Sage Publications, The International Professional Publishers, London (1984)Google Scholar
  2. 2.
    Anderberg, M.R.: Cluster Analysis for Applications. Academic Press, New York (1973)zbMATHGoogle Scholar
  3. 3.
    Bettini, C., Montanari, A. (eds.): Spatial and Temporal Granularity: Papers from the AAAI Workshop. Technical Report WS-00-08. The AAAI Press, Menlo Park, CA (2000)Google Scholar
  4. 4.
    Bettini, C., Montanari, A.: Research issues and trends in spatial and temporal granularities. Annals of Mathematics and Artificial Intelligence 36, 1–4 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bratko, I.: PROLOG: Programming for Artificial Intelligence, 2nd edn. Addison-Wesley, New York (1990)Google Scholar
  6. 6.
    Brink, C.: Power structures. Algebra Universalis 30, 177–216 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Bryniarski, E.: A calculus of rough sets of the first order. Bulletin of the Polish Academy of Sciences, Mathematics 37, 71–77 (1989)MathSciNetzbMATHGoogle Scholar
  8. 8.
    de Loupy, C., Bellot, P., El-Bèze, M., Marteau, P.F.: Query expansion and classification of retrieved documents. In: Proceedings of the Seventh Text REtrieval Conference (TREC-7), pp. 382–389 (1998)Google Scholar
  9. 9.
    Demri, S., Orlowska, E.: Logical analysis of indiscernibility. In: Orlowska, E. (ed.) Incomplete Information: Rough Set Analysis, pp. 347–380. Physica-Verlag, Heidelberg (1998)Google Scholar
  10. 10.
    Dubois, D., Prade, P.: Fuzzy rough sets and rough fuzzy sets. International Journal of General Systems 17, 191–209 (1990)CrossRefzbMATHGoogle Scholar
  11. 11.
    Graziano, A.M., Raulin, M.L.: Research Methods: A Process of Inquiry, 4th edn. Allyn and Bacon, Boston (2000)Google Scholar
  12. 12.
    Euzenat, J.: Granularity in relational formalisms - with application to time and space representation. Computational Intelligence 17, 703–737 (2001)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Friske, M.: Teaching proofs: a lesson from software engineering. American Mathematical Monthly 92, 142–144 (1995)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Giunchglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 56, 323–390 (1992)CrossRefGoogle Scholar
  15. 15.
    Grzymala-Busse, J.W.: Rough-set and Dempster-Shafer approaches to knowledge acquisition under uncertainty – a comparison. Department of Computer Science, University of Kansas (1987) (manuscript)Google Scholar
  16. 16.
    Han, J., Cai, Y., Cercone, N.: Data-driven discovery of quantitative rules in data bases. IEEE Transactions on Knowledge and Data Engineering 5, 29–40 (1993)CrossRefGoogle Scholar
  17. 17.
    Hearst, M.A., Pedersen, J.O.: Reexamining the cluster hypothesis: Scatter/Gather on retrieval results. In: Proceedings of SIGIR 1996, pp. 76–84 (1996)Google Scholar
  18. 18.
    Hobbs, J.R.: Granularity. In: Proceedings of the Ninth Internation Joint Conference on Artificial Intelligence, pp. 432–435 (1985)Google Scholar
  19. 19.
    Hornsby, K.: Temporal zooming. Transactions in GIS 5, 255–272 (2001)CrossRefGoogle Scholar
  20. 20.
    Imielinski, T.: Domain abstraction and limited reasoning. In: Proceedings of the 10th International Joint Conference on Artificial Intelligence, pp. 997–1003 (1987)Google Scholar
  21. 21.
    Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.): Rough Set Theory and Granular Computing. Springer, Berlin (2003)zbMATHGoogle Scholar
  22. 22.
    Jardine, N., Sibson, R.: Mathematical Taxonomy. Wiley, New York (1971)zbMATHGoogle Scholar
  23. 23.
    Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information. Prentice Hall, Englewood Cliffs (1988)zbMATHGoogle Scholar
  24. 24.
    Knoblock, C.A.: Generating Abstraction Hierarchies: an Automated Approach to Reducing Search in Planning. Kluwer Academic Publishers, Boston (1993)zbMATHGoogle Scholar
  25. 25.
    Lamport, L.: How to write a proof. American Mathematical Monthly 102, 600–608 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Ledgard, H.F., Gueras, J.F., Nagin, P.A.: PASCAL with Style: Programming Proverbs. Hayden Book Company, Inc., Rechelle Park (1979)Google Scholar
  27. 27.
    Lee, T.T.: An information-theoretic analysis of relational databases – part I: data dependencies and information metric. IEEE Transactions on Software Engineering SE-13, 1049–1061 (1987)CrossRefGoogle Scholar
  28. 28.
    Leron, U.: Structuring mathematical proofs. American Mathematical Monthly 90, 174–185 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Lin, T.Y.: Topological and fuzzy rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 287–304. Kluwer Academic Publishers, Boston (1992)Google Scholar
  30. 30.
    Lin, T.Y.: Granular computing on binary relations I: data mining and neighborhood systems, II: rough set representations and belief functions. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1, pp. 107–140. Physica-Verlag, Heidelberg (1998)Google Scholar
  31. 31.
    Lin, T.Y.: Generating concept hierarchies/networks: mining additional semantics in relational data. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 174–185. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  32. 32.
    Lin, T.Y.: Granular computing. Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 16–24. Springer, Heidelberg (2003)Google Scholar
  33. 33.
    Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.): Rough Sets, Granular Computing and Data Mining. Physica-Verlag, Heidelberg (2002)Google Scholar
  34. 34.
    Lin, T.Y., Zhong, N., Dong, J., Ohsuga, S.: Frameworks for mining binary relations in data. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 387–393. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  35. 35.
    Mani, I.: A theory of granularity and its application to problems of polysemy and underspecification of meaning. In: Proceedings of the Sixth International Conference, Principles of Knowledge Representation and Reasoning, pp. 245–255 (1998)Google Scholar
  36. 36.
    McCalla, G., Greer, J., Barrie, J., Pospisil, P.: Granularity hierarchies. Computers and Mathematics with Applications 23, 363–375 (1992)CrossRefzbMATHGoogle Scholar
  37. 37.
    Orlowska, E.: Logic of indiscernibility relations. Bulletin of the Polish Academy of Sciences, Mathematics 33, 475–485 (1985)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston (1991)zbMATHGoogle Scholar
  40. 40.
    Pawlak, Z.: Granularity of knowledge, indiscernibility and rough sets. In: Proceedings of 1998 IEEE International Conference on Fuzzy Systems, pp. 106–110 (1998)Google Scholar
  41. 41.
    Pedrycz, W.: Granular Computing: An Emerging Paradigm. Springer, Berlin (2001)zbMATHGoogle Scholar
  42. 42.
    Peikoff, L.: Objectivism: the Philosophy of Ayn Rand. Dutton, New York (1991)Google Scholar
  43. 43.
    Polkowski, L., Skowron, A.: Towards adaptive calculus of granules. In: Proceedings of 1998 IEEE International Conference on Fuzzy Systems, pp. 111–116 (1998)Google Scholar
  44. 44.
    Saitta, L., Zucker, J.-D.: Semantic abstraction for concept representation and learning. In: Proceedings of the Symposium on Abstraction, Reformulation and Approximation, pp. 103–120 (1998), http://www.cs.vassar.edu/~ellman/sara98/papers/ (retrieved on December 14 2003)
  45. 45.
    Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw Hill, New York (1983)zbMATHGoogle Scholar
  46. 46.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  47. 47.
    Simpson, S.G.: What is foundations of mathematics? (1996). http://www.math.psu.edu/simpson/hierarchy.html (retrieved November 21, 2003)
  48. 48.
    Skowron, A.: Toward intelligent systems: calculi of information granules. Bulletin of International Rough Set Society 5, 9–30 (2001)Google Scholar
  49. 49.
    Skowron, A., Grzymala-Busse, J.: From rough set theory to evidence theory. In: Yager, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Shafer Theory of Evidence, pp. 193–236. Wiley, New York (1994)Google Scholar
  50. 50.
    Skowron, A., Stepaniuk, J.: Information granules and approximation spaces. In: Proceedings of 7th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 354–361 (1998)Google Scholar
  51. 51.
    Skowron, A., Stepaniuk, J.: Information granules: towards foundations of granular computing. International Journal of Intelligent Systems 16, 57–85 (2001)CrossRefzbMATHGoogle Scholar
  52. 52.
    Smith, E.E.: Concepts and induction. In: Posner, M.I. (ed.) Foundations of Cognitive Science, pp. 501–526. The MIT Press, Cambridge (1989)Google Scholar
  53. 53.
    Sowa, J.F.: Conceptual Structures, Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar
  54. 54.
    Stell, J.G., Worboys, M.F.: Stratified map spaces: a formal basis for multiresolution spatial databases. In: Proceedings of the 8th International Symposium on Spatial Data Handling, pp. 180–189 (1998)Google Scholar
  55. 55.
    van Mechelen, I., Hampton, J., Michalski, R.S., Theuns, P. (eds.): Categories and Concepts: Theoretical Views and Inductive Data Analysis. Academic Press, New York (1993)Google Scholar
  56. 56.
    van Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)Google Scholar
  57. 57.
    Wille, R.: Concept lattices and conceptual knowledge systems. Computers Mathematics with Applications 23, 493–515 (1992)CrossRefzbMATHGoogle Scholar
  58. 58.
    Yager, R.R., Filev, D.: Operations for granular computing: mixing words with numbers. In: Proceedings of 1998 IEEE International Conference on Fuzzy Systems, pp. 123–128 (1998)Google Scholar
  59. 59.
    Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International Journal of Approximation Reasoning 15, 291–317 (1996)CrossRefzbMATHGoogle Scholar
  60. 60.
    Yao, Y.Y.: Granular computing: basic issues and possible solutions. In: Proceedings of the 5th Joint Conference on Information Sciences, pp. 186–189 (2000)Google Scholar
  61. 61.
    Yao, Y.Y.: Information granulation and rough set approximation. International Journal of Intelligent Systems 16, 87–104 (2001)CrossRefzbMATHGoogle Scholar
  62. 62.
    Yao, Y.Y.: Modeling data mining with granular computing. In: Proceedings of the 25th Annual International Computer Software and Applications Conference (COMPSAC 2001), pp. 638–643 (2001)Google Scholar
  63. 63.
    Yao, Y.Y.: A step towards the foundations of data mining. In: Dasarathy, B.V. (ed.) Data Mining and Knowledge Discovery: Theory, Tools, and Technology V, The International Society for Optical Engineering, pp. 254–263 (2003)Google Scholar
  64. 64.
    Yao, Y.Y.: Probabilistic approaches to rough sets. Expert Systems 20, 287–297 (2003)CrossRefGoogle Scholar
  65. 65.
    Yao, Y.Y., Liau, C.-J.: A generalized decision logic language for granular computing. In: Proceedings of FUZZ-IEEE 2002 in the IEEE World Congress on Computational Intelligence, pp. 1092–1097 (2002)Google Scholar
  66. 66.
    Yao, Y.Y., Liau, C.-J., Zhong, N.: Granular computing based on rough sets, quotient space theory, and belief functions. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 152–159. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  67. 67.
    Yao, Y.Y., Noroozi, N.: A unified framework for set-based computations. In: Proceedings of the 3rd International Workshop on Rough Sets and Soft Computing. The Society for Computer Simulation, pp. 252–255 (1995)Google Scholar
  68. 68.
    Yao, Y.Y., Wong, S.K.M.: Representation, propagation and combination of uncertain information. International Journal of General Systems 23, 59–83 (1994)CrossRefzbMATHGoogle Scholar
  69. 69.
    Yao, Y.Y., Wong, S.K.M., Lin, T.Y.: A review of rough set models. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining: Analysis for Imprecise Data, pp. 47–75. Kluwer Academic Publishers, Boston (1997)Google Scholar
  70. 70.
    Yao, Y.Y., Zhong, N.: Granular computing using information tables. In: Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.) Data Mining, Rough Sets and Granular Computing, pp. 102–124. Physica-Verlag, Heidelberg (2002)Google Scholar
  71. 71.
    Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, N., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland, Amsterdam (1979)Google Scholar
  72. 72.
    Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems 4, 103–111 (1996)CrossRefGoogle Scholar
  73. 73.
    Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 19, 111–127 (1997)CrossRefMathSciNetGoogle Scholar
  74. 74.
    Zadeh, L.A.: Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Computing 2, 23–25 (1998)Google Scholar
  75. 75.
    Zhang, B., Zhang, L.: Theory and Applications of Problem Solving. North-Holland, Amsterdam (1992)zbMATHGoogle Scholar
  76. 76.
    Zhang, L., Zhang, B.: The quotient space theory of problem solving. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 11–15. Springer, Heidelberg (2003)Google Scholar
  77. 77.
    Zhong, N., Skowron, A., Ohsuga, S. (eds.): RSFDGrC 1999. LNCS (LNAI), vol. 1711. Springer, Heidelberg (1999)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yiyu Yao
    • 1
  1. 1.Department of Computer ScienceUniversity of ReginaRegina, SaskatchewanCanada

Personalised recommendations