Advertisement

EMiT: A Process Mining Tool

  • Boudewijn F. van Dongen
  • Wil M. P. van der Aalst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3099)

Abstract

Process mining offers a way to distill process models from event logs originating from transactional systems in logistics, banking, e-business, health-care, etc. The algorithms used for process mining are complex and in practise large logs are needed to derive a high-quality process model. To support these efforts, the process mining tool EMiT has been built. EMiT is a tool that imports event logs using a standard XML format as input. Using an extended version of the α-algorithm [3,8] it can discover the underlying process model and represent it in terms of a Petri net. This Petri net is then visualized by the program, automatically generating a ”smart” layout of the model. To support the practical application of the tool, various adapters have been developed that allow for the translation of system-specific logs to the standard XML format. As a running example, we use an event log generated by the workflow management system Staffware.

Keywords

Business Process Finite State Machine Transactional Model Transactional System Mining Social Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.: Workflow Mining: Current Status and Future Directions. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 389–406. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., Desel, J., Oberweis, A.: Business Process Management. LNCS, vol. 1806. Springer, Heidelberg (2000)Google Scholar
  3. 3.
    van der Aalst, W.M.P., van Dongen, B.F.: Discovering Workflow Performance Models from Timed Logs. In: Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 45–63. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods, and Systems. MIT press, Cambridge (2002)Google Scholar
  5. 5.
    van der Aalst, W.M.P., Song, M.: Mining Social Networks: Uncovering interaction patterns in business processes. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 244–260. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  7. 7.
    van der Aalst, W.M.P., Weijters, A.J.M.M. (eds.): Process Mining, Special Issue of Computers in Industry, vol. 53(3). Elsevier Science Publishers, Amsterdam (2004)Google Scholar
  8. 8.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. QUT Technical report, FIT-TR-2003-03, Queensland University of Technology, Brisbane (2003) (Accepted for publication in IEEE Transactions on Knowledge and Data Engineering)Google Scholar
  9. 9.
    AT&T. Graphviz - Open Source Graph Drawing Software (including DOT), http://www.research.att.com/sw/tools/graphviz/
  10. 10.
    Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architecture, and Implementation. International Thomson Computer Press, London (1996)Google Scholar
  11. 11.
    Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice-Hall PTR, Upper Saddle River (1999)Google Scholar
  12. 12.
    Staffware. Staffware 2000 / GWD User Manual. Staffware plc, Berkshire, United Kingdom (2000)Google Scholar
  13. 13.
    Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnosing Workflow Processes using Woflan. The Computer Journal 44(4), 246–279 (2001)zbMATHCrossRefGoogle Scholar
  14. 14.
    Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Boudewijn F. van Dongen
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Department of Technology ManagementEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations