Modeling and Analysis of Margolus Quantum Cellular Automata Using Net-Theoretical Methods

  • Leo Ojala
  • Olli-Matti Penttinen
  • Elina Parviainen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3099)

Abstract

Petri net methods have been very successful in modeling the operation of classical parallel systems. In this work, these methods are applied to designing semi-classical parallel quantum computers. The demonstration object of our study is a quantum Billiard Ball Model Cellular Automaton (bbmca) suggested by Margolus. Firstly, a high-level Petri net model of a classical reversible version of this automaton is constructed. Subsequently, this Petri net model is used as a so-called kernel net of the quantum bbmca. The time-independent Hamiltonian needed to generate the time-evolution of a quantum computer can be automatically generated from the reachability graph of a kernel net. Also, a new numerical method for solving the resulting Schröddinger differential equation system needed for time simulation of the quantum automaton is given. QuantumMaria, a software package for modeling and numerical simulation of quantum computers, is introduced.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benioff, P.: The Computer as a Physical System: A Microscopic Quantum Mechanical Hamiltonian Model of Computers as Represented by Turing Machines. Journal of Statistical Physics 22(5), 563–591 (1980)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Deutsch, D.: Quantum Theory, the Church–Turing Principle and the Universal Quantum Computer. Proceedings of Royal Society London A 400, 97–117 (1985)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Feynman, R.P.: Simulating Physics with Computers. International Journal of Theoretical Physics 21(6/7), 467–488 (1982)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Feynman, R.P.: Quantum Mechanical Computers. Foundations of Physics 16(6), 507–531 (1986)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Fox, B.L., Glynn, P.W.: Computing Poisson Probabilities. Communications of the ACM 31(4), 440–445 (1988)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Fredkin, E., Toffoli, T.: Conservative Logic. International Journal of Theoretical Physics 21(3), 219–253 (1982)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gross, D., Miller, D.R.: The Randomization Technique as a Modeling Tool and Solution Procedure for Transient Markov Processes. Operations Research 32(2), 345–361 (1984)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gruska, J.: Quantum Computing. McGraw-Hill, UK (1999)Google Scholar
  9. 9.
    Junttila, T.: On the Symmetry Reduction Method for Petri Nets and Similar Formalisms. Research Report HUT–TCS–A80, Helsinki University of Technology, Department of Computer Science and Engineering, Laboratory for Theoretical Computer Science, Espoo, Finland, Dissertation for the degree of Doctor of Science in Technology (September 2003)Google Scholar
  10. 10.
    Mäkelä, M.: A Reachability Analyser for Algebraic System Nets. Research Report HUT–TCS–A69, Helsinki University of Technology, Department of Computer Science and Engineering, Laboratory for Theoretical Computer Science, Espoo, Finland (June 2001)Google Scholar
  11. 11.
    Mäkelä, M.: Maria: Modular Reachability Analyser for Algebraic System Nets. In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002. LNCS, vol. 2360, pp. 434–444. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Margolus, N.: Physics-Like Models of Computation. Physica D 10, 81–95 (1984)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Margolus, N.: Quantum Computation. Annals of the New York Academy of Sciences 480, 487–497 (1986)CrossRefGoogle Scholar
  14. 14.
    Margolus, N.: Parallel Quantum Computation. In: Zurek, W.H. (ed.) Complexity, Entropy, and the Physics of Information. SFI Studies in the Sciences of Complexity, vol. VIII, pp. 273–287. Addison–Wesley, Reading (1990)Google Scholar
  15. 15.
  16. 16.
    Ojala, L., Penttinen, O.-M.: Simulating Quantum Interference in Feynman’s \(\checkmark\)not-computer with Stochastic Petri Nets. In: Proceedings of the European Simulation and Modelling Conference (ESMc 2003), Naples, Italy, October 2003, pp. 494–502 (2003)Google Scholar
  17. 17.
    Ojala, L., Penttinen, O.-M., Rantanen, H.: A Novel Application of Stochastic Petri Nets: Simulation of Serial Quantum Computers – Feynman’s Swap Computer. In: Kemper, P. (ed.) On-site Proceedings of ICALP03 Satellite Workshop on Stochastic Petri Nets and Related Formalisms, June 2003. Forschungsberichte des Fachbereichs Informatik der Universität Dortmund, vol. 780, pp. 103–122. Eindhoven, The Netherlands (2003)Google Scholar
  18. 18.
    Parviainen, E.: Reducing Size of Quantum Gate Matrices Using Pr/T Nets. In: Proceedings of the 2002 IEEE International Conference on Systems, Man and Cybernetics, Hammamet, Tunisia, October 2002, vol. 2, pp. 634–639. IEEE (Institute of Electrical and Electronics Engineers, Inc.), Los Alamitos (2002)Google Scholar
  19. 19.
    Peres, A.: Measurement of Time by Quantum Clocks. American Journal of Physics 48(7), 552–557 (1980)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Peres, A.: Zeno Paradox in Quantum Theory. American Journal of Physics 48(11), 931–932 (1980)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Peres, A.: Reversible Logic and Quantum Computers. Physical Review A 32(6), 3266–3276 (1985)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Reisig, W.: Petri Nets and Algebraic Specifications. Theoretical Computer Science 80(1-34), 1–34 (1991)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)Google Scholar
  24. 24.
    von Neumann, J.: Theory of Self-reproducing Automata. University of Illinois Press, Urbana (1966); Completed and edited by Burks A. W.Google Scholar
  25. 25.
    Wolfram, S.: Theory and Applications of Cellular Automata: Including Selected Papers 1983–1986. World Scientific Publishing Co., Inc., River Edge (1986)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Leo Ojala
    • 1
  • Olli-Matti Penttinen
    • 1
  • Elina Parviainen
    • 1
  1. 1.Laboratory for Theoretical Computer ScienceHelsinki University of TechnologyFinland

Personalised recommendations