Petri Net Based Model Validation in Systems Biology

  • Monika Heiner
  • Ina Koch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3099)


This paper describes the thriving application of Petri net theory for model validation of different types of molecular biological systems. After a short introduction into systems biology we demonstrate how to develop and validate qualitative models of biological pathways in a systematic manner using the well-established Petri net analysis technique of place and transition invariants. We discuss special properties, which are characteristic ones for biological pathways, and give three representative case studies, which we model and analyse in more detail. The examples used in this paper cover signal transduction pathways as well as metabolic pathways.


Pentose Phosphate Pathway Stoichiometric Equation Output Compound Stoichiometric Relation Fusion Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bairoch, A.: The ENZYME Data Bank. Nucleic Acids Res. 21(3), 3155–3156 (1993)CrossRefGoogle Scholar
  2. 2.
    Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry, 5th edn. Freeman, New York (2002)Google Scholar
  3. 3.
    Chen, M., Hofestaedt, R.: Quantitative Petri Net Model of Gene Regulated Metabolic Networks in the Cell. Silico Biol. 3, 30 (2003)Google Scholar
  4. 4.
  5. 5.
    Fernie, A.R., Willmitzer, L., Trethewey, R.N.: Sucrose-to-starch: a Transition in Molecular Plant Physiology. Trends in Plant Sci. 7(1), 35–41 (2002)CrossRefGoogle Scholar
  6. 6.
    Genrich, H., Küffner, R., Voss, K.: Executable Petri Net Models for the Analysis of Metabolic Pathways. In: 21th International Conference on Application and Theory of Petri Nets. Workshop Proc. Practical Use of High-level Petri Nets, Aarhus, June 2000, pp. 1–14 (2000)Google Scholar
  7. 7.
    Heiner, M., Koch, I., Will, J.: Model Validation of Biological Pathways Using Petri Nets – Demonstrated for Apoptosis. Journal on BioSystems (2003) (in press)Google Scholar
  8. 8.
    Heinrich, R., Rapoport, T.A.: A Linear Steady-state Treatment of Enzymatic Chains: General Properties, Control and Effector Strength. Eur. J. Biochem. 42, 89–95 (1974)CrossRefGoogle Scholar
  9. 9.
    Hengartner, M.O.: The Biochemistry of Apoptosis. Nature 407, 770–776 (2000)CrossRefGoogle Scholar
  10. 10.
    Kacser, H., Burns, J.A.: The Control of Flux. Symp. Soc. Exp. Bio. 27, 65–104 (1973)Google Scholar
  11. 11.
    KEGG Kyoto Encyclopedia of Genes and Genomes,
  12. 12.
    Koch, I., Schuster, S., Heiner, M.: Simulation and Analysis of Metabolic Networks Using Time-Dependent Petri Nets. In: Proc. of the German Conference on Bioinformatics (GCB 1999), Hannover, October 1999, pp. 208–209 (1999)Google Scholar
  13. 13.
    Koch, C., Laurent, G.: Complexity and the Nervous System. Science 284, 96–98 (1999)CrossRefGoogle Scholar
  14. 14.
    Koch, I., Junker, B., Heiner, M.: Application Petri Net Theory to Model Validation of the Sucrose-to-starch Pathway in Potato Tuber. Submitted to Bioinformatics (2003)Google Scholar
  15. 15.
    Kohn, M.C., Letzkus, W.J.: A Graph-theoretical Analysis of Metabolic Regulation. J. Theoret. Biol. 100, 293–304 (1983)CrossRefGoogle Scholar
  16. 16.
    Lautenbach, K.: Exakte Bedingungen der Lebendigkeit für eine Klasse von Petrinetzen. Berichte der GMD 82, Bonn (1973) (in German)Google Scholar
  17. 17.
    Lazlo, E.: The Systems View of the World. George Braziller, p. 5 (1972)Google Scholar
  18. 18.
    Matsuno, H., Fujita, S., Doi, A., Nagasaki, M., Miyano, S.: Towards Biopathway Modeling and Simulation. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 3–22. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopathways Representation and Simulation on Hybrid Functional Petri Net. Silico Biol. 3, 32 (2003)Google Scholar
  20. 20.
    Mendes, P.: Biochemistry by Numbers: Simulation of Biochemical Pathway with Gepasi 3. Trends Biochem. Sci. 22, 361–363 (1999)CrossRefGoogle Scholar
  21. 21.
    Narahari, Y., Suryanarayanan, K., Reddy, N.V.S.: Discrete Event Simulation of Distributed Systems Using Stochastic Petri Nets. Energy, Electronics, Computers, Communications, pp. 622–625 (1989)Google Scholar
  22. 22.
    Peccoud, J.: Stoch, PN for Genetic Networks. MS-Medicine Sciences 14, 991–993 (1998)Google Scholar
  23. 23.
    Petri, C. A.: Interpretations of Net Theory. GMD, Interner Bericht 75-07, 2nd improved edn., p. 26 (December 1976) Google Scholar
  24. 24.
    Pfeiffer, T., Sánchez-Valdenebro, I., Nuño, J.C., Montero, F., Schuster, S.: METATOOL: For Studying Metabolic Networks. Bioinformatics 15, 251–257 (1999)CrossRefGoogle Scholar
  25. 25.
    Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri Net Representation in Metabolic Pathways. In: Proc. First International Conference on Intelligent Systems for Molecular Biology, pp. 328–336. AAAI Press, Menlo Park (1993)Google Scholar
  26. 26.
    Reddy, V.N., Liebman, M.N., Mavrovouniotis, M.L.: Qualitative Analysis of Biochemical Reaction Systems. Comput. Biol. Med. 26(1), 9–24 (1996)CrossRefGoogle Scholar
  27. 27.
    Reisig, W.: Petri Nets; An Introduction. Springer, Heidelberg (1982)Google Scholar
  28. 28.
    Savageau, M.A.: Biochemical Systems Analysis, I. Some Mathematical Properties of the Rate Law for the Component Ezymatic Reactions. J. Theoret. Biol. 25, 365–369 (1969)CrossRefGoogle Scholar
  29. 29.
    Savageau, M.A.: Biochemical Systems Analysis, II. The Steady-state Solutions for an n- Pool System Using a Power-law Approximation. J. Theoret. Biol. 25, 370–379 (1969)CrossRefGoogle Scholar
  30. 30.
    Savageau, M.A.: Reconstructionist Molecular Biology. The New Biologist 3, 190–197 (1991)Google Scholar
  31. 31.
    Schuster, S., Hilgetag, C., Schuster, R.: Determining Elementary Modes of Functioning in Biochemical Reaction Networks at Steady State. In: Proc. Second Gauss Symposium, pp. 101–114 (1993)Google Scholar
  32. 32.
    Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I., Dandekar, T.: Structural Analysis of Metabolic Networks: Elementary Flux Modes, Analogy to Petri Nets, and Application toMycoplasma pneumoniae. In: Proc. of the German Conference on Bioinformatics 2000, pp. 115–120. Logos Verlag, Berlin (2000)Google Scholar
  33. 33.
    Selkov, E., Basmanova, S., Gaasterland, T., Goryanin, I., Gretchkin, Y., Maltsev, N., Nenashev, V., Overbeek, R., Panyushkina, E., Pronevitch, L., Selkov Jr., E., Yunus, I.: The Metabolic Pathway Collection from ERM: the Enzyme and Metabolic Pathway Database. Nucleic Acids Res. 24(1), 26–29 (1996)CrossRefGoogle Scholar
  34. 34.
    Selkov Jr., E., Gretchkin, Y., Mikhailova, N., Selkov, E.: MPW: The Metabolic Pathways Database. Nucleic Acids Res. 26(1), 43–45 (1998)CrossRefGoogle Scholar
  35. 35.
    Starke, P.H.: INA - Integrated Net Analyzer. Manual, Berlin (1998)Google Scholar
  36. 36.
    Tomita, M., Hashimoto, K., Takahashi, K., Shimuzu, T.S., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J.C., HUtchinson 3rd, C.A.: Software Enironment forWhole-cell Simulation. Bioinformatics 15, 72–84 (199)Google Scholar
  37. 37.
    Voit, E.O.: Computational Analysis of Biochemical Systems. Cambridge University Press, Cambridge (2000)Google Scholar
  38. 38.
    Voss, K., Heiner, M., Koch, I.: Steady State Analysis of Metabolic Pathways Using Petri Nets. Silico Biol. 3, 31 (2003)Google Scholar
  39. 39.
    Will, J., Heiner, M.: Petri Nets in Biology, Chemistry, and Medicine - Bibliography; Computer Science Reports 04/02, BTU Cottbus, p. 36 (November 2002)Google Scholar
  40. 40.
    Wingender, E., Chen, X., Fricke, E., Geffers, R., Hehl, R., Liebich, I., Krull, M., Matys, V., Michael, H., Ohnhauser, R., Pruss, M., Schacherer, F., Thiele, S., Urbach, S.: The Transfac System on Gene Expression Regulation. Nucl. Acids Res. 29(1), 281–283 (2001)CrossRefGoogle Scholar
  41. 41.
    Xenarios, I., Rice, D.W., Salwinski, L., Baron, M.K., Marcotte, E.M., Eisenberg, D.: Dip: the Database of Interacting Proteins. Nucl. Acids Res. 28(1), 289–291 (2000)CrossRefGoogle Scholar
  42. 42.
    Zeigarnik, A.V.: A Graph-Theoretical Model of Complex Reaction Mechanisms: Special Graphs for Characterization of the Linkage between the Routes in Complex Reactions Having Linear Mechanisms. Kinetics and Catalysis 35(5), 656–658 (1994)Google Scholar
  43. 43.
    Zimmer, R.: Petri Net Based Pathway Models of Biochemical Networks for the Interpretation of Expression Data. Supplement to the Proc. of the 2nd Workshop on Computation of Biochemical Pathways and Genetic Networks, EML Heidelberg, p. 10 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Monika Heiner
    • 1
  • Ina Koch
    • 2
  1. 1.Department of Computer ScienceBrandenburg University of Technology CottbusCottbusGermany
  2. 2.Department of BioinformaticsTechnical University of Applied Sciences BerlinBerlinGermany

Personalised recommendations