Advertisement

Recent Soft Computing Approaches to User Modeling in Adaptive Hypermedia

  • Enrique Frías-Martínez
  • George Magoulas
  • Sherry Chen
  • Robert Macredie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3137)

Abstract

The ability of an adaptive hypermedia system to create tailored environments depends mainly on the amount and accuracy of information stored in each user model. One of the difficulties that user modeling faces is the necessity of capturing the imprecise nature of human behavior. Soft Computing has the ability to handle and process uncertainty which makes it possible to model and simulate human decision-making. This paper surveys different soft computing techniques that can be used to efficiently and accurately capture user behavior. The paper also presents guidelines that show which techniques should be used according to the task implemented by the application.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardissono, L., Goy, A.: Tailoring the Interaction with Users in Electronic Shops. In: Proceedings of the 7th International Conference on User Modeling, UM 1997, Banff, Canada (1997)Google Scholar
  2. 2.
    Beck, J., Jia, P., Sison, J., Mostow, J.: Predicting Student Help-Request Behavior in an Intelligent Tutor for Reading. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, pp. 303–312. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Beck, J.E., Woolf, B.P.: Using a Learning Agent with a Student Model. In: Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J. (eds.) ITS 1998. LNCS, vol. 1452, pp. 6–15. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)zbMATHGoogle Scholar
  5. 5.
    Bidel, S., Lemoine, L., Piat, F.: Statistical machine learning for tracking hypermedia user behavior. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Bonissone, P., Badami, C., Chiang, X.: Industrial Applications of Fuzzy Logic at General Electric. Proceedings of the IEEE 83(3), 450–465 (1995)CrossRefGoogle Scholar
  7. 7.
    Fan, W., Gordon, M.D., Pathak, P.: Personalization of Search Engine Services for Effective Retrieval and Knowledge management. In: Proc. Of the 21st Int. Conf. on Information Systems, pp. 20–34 (2000)Google Scholar
  8. 8.
    Fausett, L.: Fundamentals of Neural Networks. Prentice-Hall, Englewood Cliffs (1994)zbMATHGoogle Scholar
  9. 9.
    George, G., Cardullo, F.: Application of Neuro-Fuzzy Systems to Behavioral Representation in Computer Generated Forces. In: Proc. 8th Conf. on Comp. Generated Forces, pp. 575–585 (1999)Google Scholar
  10. 10.
    Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  11. 11.
    Goren-Bar, D., Kuflik, T., Lev, D., Shoval, P.: Automatic Personal Categorization Using Artificial Neural Networks. In: Bauer, M., Gmytrasiewicz, P.J., Vassileva, J. (eds.) UM 2001. LNCS (LNAI), vol. 2109, pp. 188–198. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Haykin, S.: Neural Networks, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)zbMATHGoogle Scholar
  13. 13.
    Jang, J.S.: ANFIS: Adaptive-Network-Based Fuzzy Inference Systems. IEEE Transactions on Systems, Man, and Cybernetics 23(3), 665–685 (1993)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Jang, J.S.R., Sun, C.T.: Neurofuzzy modelling and control. Proceedings IEEE (1995)Google Scholar
  15. 15.
    Jang, J.S.R., Sun, C.T.: Neurofuzzy and Soft Computing. Prentice Hall, Englewood Cliffs (1997)Google Scholar
  16. 16.
    Joshi, A., Joshi, K., Krishnapuram, R.: On mining Web Access Logs. In: Proceedings of the ACM-SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 63–69 (2000)Google Scholar
  17. 17.
    Klir, J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  18. 18.
    Kobsa, A.: Generic User Modeling Systems. User Modeling and User-Adapted Interaction 11, 49–63 (2001)zbMATHCrossRefGoogle Scholar
  19. 19.
    Krishnapuram, R., Joshi, A., Nasraoui, O., Yi, L.: Low-Complexity Fuzzy Relational Clustering Algorithms for Web Mining. IEEE Transactions on Fuzzy Systems 9(4), 595–608 (2001)CrossRefGoogle Scholar
  20. 20.
    Lampinen, T., Koivisto, H.: Profiling Network Applications with Fuzzy C-Means Clustering and Self-Organising Map. In: Int. Conf. on Fuzzy Systems and Knowledge Discovery (2002)Google Scholar
  21. 21.
    Lee, R.S.T.: iJADE IWShopper: A New Age of Intelligent Web Shopping System Based on Fuzzy-Neuro Agent Technology. In: Zhong, N., Yao, Y., Ohsuga, S., Liu, J. (eds.) WI 2001. LNCS (LNAI), vol. 2198, pp. 403–412. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Magoulas, G.D., Papanikolau, K.A., Grigoriadou, M.: Neuro-fuzzy synergism for planning the content in a web-based course. Informatica 25(1) (2001)Google Scholar
  23. 23.
    Min, H., Smolinski, T., Boratyn, G.: A GA-based Data Mining Approach to Profiling the Adopters of E-purchasing. In: Proc. of the 3rd Int. Conf. on Information Reuse and Integration, pp. 1–6 (2001)Google Scholar
  24. 24.
    Nasraoui, O., Cardona, C., Rojas, C., Gonzalez, F.: Mining Evolving User Profiles in Noisy Web Clickstream Data with a Scalable Immune System Clustering Algorithm. In: Workshop Notes of WEBKDD 2003: Web Mining as Premise to Effective&Intelligent Web Applications, pp. 71–81 (2003)Google Scholar
  25. 25.
    Nasraoui, O., Frigui, H., Joshi, A., Krishnapuram, R.: Mining Web Access Logs Using Relational Competitive Fuzzy Clustering. In: 8th Intl. Fuzzy Systems Association World Congress - IFSA 1999 (1999)Google Scholar
  26. 26.
    Nasraoui, O., Krishnapuram, R.: Extracting Web User Profiles Using Relational Competitive Fuzzy Clustering. In: International Journal on Artificial Intelligence Tools, Vol. 9(4), pp. 509–526 (2000)Google Scholar
  27. 27.
    Nasraoui, O., Petenes, C.: Combining Web Usage Mining and Fuzzy Inference for Website Personalization. In: WEBKDD 2003: Web Mining as Premise to Effective Web Applications, pp. 37–46 (2003)Google Scholar
  28. 28.
    Pal, S.K., Talwar, V., Mitra, P.: Web Mining in Soft Computing Framework: Relevance, State of the Art and Future Directions. IEEE Transactions on Neural Networks 13(5), 1163–1177 (2002)CrossRefGoogle Scholar
  29. 29.
    Perkowitz, M., Etzioni, O.: Adaptive Web Sites. Communications of the ACM 43(8), 152–158 (2000)CrossRefGoogle Scholar
  30. 30.
    Romero, C., Ventura, S., de Bra, P.: Discovering Prediction Rules in AHA! Courses. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, pp. 25–34. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  31. 31.
    Sas, C., Reilly, R., O’Hare, G.: A Connectionist Model of Spatial Knowledge Acquisition in a Virtual Environment. In: 2nd Workshop on Machine Learning, Information Retrieval and User Modeling (2003)Google Scholar
  32. 32.
    Schmitt, C., Dengler, D., Bauer, M.: Multivariate Preference Models and Decision Making with the MAUT Machine. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, pp. 297–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  33. 33.
    Shavlik, J., Eliassi, T.: A System for building intelligent Agents that Learn to retrieve and Extract Information. In: International Journal on User Modeling and User Adapted Interaction (2001)Google Scholar
  34. 34.
    Sheperd, A., Watters, C., Marath, A.T.: Adaptive User Modeling for Filtering Electronic News. In: Proc. of the 35th Annual Hawaii Intl. Conf. on System Sciences (HICSS 2002), vol. 4 (2002)Google Scholar
  35. 35.
    Stathacopoulou, R., Grigoriadou, M., Magoulas, G.D.: A Neuro-fuzzy Approach in Student Modeling. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, pp. 337–342. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  36. 36.
    Sternberg, M., Reynolds, R.G.: Using cultural algorithms to support re-engineering of rulebased expert systems in dynamic performance environments: a case study in fraud detection Sternberg. IEEE Transactions on Evolutionary Computation 1(4), 225–243 (1997)CrossRefGoogle Scholar
  37. 37.
    Ticlek, A.B., Andrews, R., Golea, M., Diederich, J.: The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Trans. on Neural Networks 9(6), 1057–1068 (1998)CrossRefGoogle Scholar
  38. 38.
    Vrettos, S., Stafylopatis, A.: A Fuzzy Rule-Based Agent for Web Retrieval-Filtering. In: Zhong, N., Yao, Y., Ohsuga, S., Liu, J. (eds.) WI 2001. LNCS (LNAI), vol. 2198, pp. 448–453. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  39. 39.
    Webb, G.I., Pazzani, M.J., Billsus, D.: Machine Learning for User Modeling. In: User Modeling an User-Adapted Interaction (11), pp. 19–29 (2001)Google Scholar
  40. 40.
    Yan, J., Ryan, M., Power, J.: Using Fuzzy Logic. Prentice-Hall, Englewood Cliffs (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Enrique Frías-Martínez
    • 1
  • George Magoulas
    • 2
  • Sherry Chen
    • 1
  • Robert Macredie
    • 1
  1. 1.Department of Information Systems & ComputingBrunel UniversityMiddlesexUK
  2. 2.School of Computer Science and Information Systems, Birkbeck CollegeUniversity of LondonLondonUK

Personalised recommendations