First Steps towards Computably-Infinite Information Systems

  • Peter Apostoli
  • Akira Kanda
  • Lech Polkowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3135)

Abstract

In order to characterize the metric of exact subsets of infinite information systems, [51] studied the asymptotic behaviour of ω–chains of graded indiscernibility relations. The SFP object underlying the universe of exact sets presented in [2] provides a concrete example of an infinite graded information system. By controlling the asymptotic behaviour of ω–Sequences of Finite Projections, the theory of graded chains of indiscernibility relations articulates the fine structure of SFP objects, providing a metric over exact sets.

Keywords

domain theory effective domain theory exact sets Frege sets graded indiscernibility infinite information systems Myhill-Sheperdson Theorem modal logic non–standard analysis numeration theory rough sets SFP objects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczel, P.: Frege Structure and the Notions of Proposition, Truth and Set. In: Barwise, J., Keisler, H., Kunen, K. (eds.) The Kleene Symposium, pp. 31–59. North-Holland, Amsterdam (1980)CrossRefGoogle Scholar
  2. 2.
    Apostoli, P., Kanda, A.: Approximation Spaces of Type-Free Sets. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 98–105. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Apostoli, P., Kanda, A.: Parts of the Continuum: towards a modern ontology of science, forthcoming in Poznan Studies in the Philosophy of Science and the Humanities, Ed. Leszek NowakGoogle Scholar
  4. 4.
    Apostoli, P., Kanda, A.: Rough Sets and the Continuum. Submitted to Advances in Rough Sets J., Eds-in-Chief J. Peters and A. Skowron. Springer LNAI subseriesGoogle Scholar
  5. 5.
    Bell, J.L.: Type Reducing Correspondences and Well-Orderings: Frege’s and Zermelo’s Constructions Re-examined. J. of Symbolic Logic 60 (1995)Google Scholar
  6. 6.
    Bell, J.L.: Set and Classes as Many. J. of Philosophical Logic 29(6), 595–681 (2000)Google Scholar
  7. 7.
    Blamey, S.: Partial Logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. III, pp. 1–70. D. Reidel Publishing Company, Dordrecht (1986)Google Scholar
  8. 8.
    Boolos, G.: On the Consistency of Frege’s Foundations of Arithmetic. In: Thomson, J.L. (ed.) On Being and Saying: Essays for Richard Cartwright, Cambridge, Mass, pp. 3–20. The MIT Press, Cambridge (1987b); Reprinted in 10, Boolos 1998].Google Scholar
  9. 9.
    Boolos, G.: The Standard of Equality of Numbers. In: Boolos, G. (ed.) Meaning and Method: Essays in Honor of Hilary Putnam, Cambridge: Cambridge University Press, Cambridge (1990b); Reprinted in [10, Boolos 1998]Google Scholar
  10. 10.
    Boolos, G.: Logic, Logic, and Logic. In: Jeffrey, R.C. (ed.), Harvard University Press, Cambridge (1998)Google Scholar
  11. 11.
    Cantor, G.: Uber unendliche, lineare Punktmannigfaltigkeiten, 5. Mathematische Annalen 21, 545–586 (1883); In [13, pp. 165-209]. A seperate edition of this, with a preface, was printed under the title Grundlagen einer allegmeinen Mannigfaltigkeitslehre. Ein mathematisch-philosophischer Versuch in der Lehre des Undendliche. Tuebner, Leipzig.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Cantor, G.: Beitrag̈e zur Beründung der transfiniten Mengenehre, I, II. Mathematische Annalen 46, 481–512 (1895); 49, pp. 207–246. In: [13, pp. 282-56]CrossRefGoogle Scholar
  13. 13.
    Cantor, G.: Gesammelte Abhandlungen Mathenatischen und Philosopischen Inhalts. In: Zermelo, E. (ed.) Gesammelte Abhandlungen Mathenatischen und Philosopischen Inhalts, Springer, Berlin (1962); Reprinted, Hildesheim: OlmsGoogle Scholar
  14. 14.
    Cattaneo, G.: Abstract Approximation Spaces for Rough Theories. In: Polkowski, L., Skowron, A., Kacprzyk., J. (eds.) Rough Sets in Knowledge Discovery: Methodology and Applications. Studies in Fuzziness and Soft Computing, vol. 18, Springer, Heidelberg (1998)Google Scholar
  15. 15.
    Cocchiarella, N.: Whither Russell’s Paradox of Predication? In: Muntz, K. (ed.) Logic and Ontology. Studies in Contemporary Philosophy, vol. 2, New York University Press, New York (1972a)Google Scholar
  16. 16.
    Cocchiarella, N.: Properties as Individuals in Formal Ontology. NO ÛS 2, 165–188 (1972b)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Ershov, J.L.: Theorie der Numerierungen I. Zeitschrift f. Math. Und Grundlagen d. Mathematik 19, 289–388 (1973)MATHGoogle Scholar
  18. 18.
    Ershov, J.L.: Theorie der Numerierungen II. Zeitschrift f. Math. Und Grundlagen d. Mathematik 21, 473–584 (1975)CrossRefGoogle Scholar
  19. 19.
    Ershov, J.L.: Model C of Partial Continuous Functionals. In: Proc. Logic Colloquium, pp. 455–467. North Holland, Amsterdam (1977)CrossRefGoogle Scholar
  20. 20.
    Feferman, S.: Towards Useful Type-free Theories I. Journal of symbolic Logic 49, 75–111 (1984)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Frege, G.: [1884]: Die Grundlagen der Arithmetik. Eine logisch mathematische Untersachung uber den Begridd der Zahl. Breslau: William Koebner. English translation by J. L. Austin, The Foundations of Arihmetic. Oxford, Basil Blackwell (1950)Google Scholar
  22. 22.
    Frege, G.: Grundgesetze der Arithmetik, 1, 2, Jena: Verlag Hermann Pohle. Reprinted at Hildesheim. Volume 1 is partially translated in [26]. Vol. 2 is translated in part in [27] (1893,1903)Google Scholar
  23. 23.
    Frege, G.: Letter to Russell. In: 62, pp. 126–28 (1902) Google Scholar
  24. 24.
    Frege, G.: The Russell Paradox. In: Frege, Gottlob, [27], pp. 127–143 (1903a); Abridged and reprinted in Irvine, A.D., Bertrand Russell: Critical Assessments, vol. 2, London: Routledge, 1–3 (1999)Google Scholar
  25. 25.
    Frege, G.: Concerning Zermelo’s Independent Discovery of Russell’s Paradox. In: Frege Against the Formalists (1903b) Google Scholar
  26. 26.
    Frege, G.: Translations from the Philosophical Writings of Gottlob Frege. Edited and translated by Peter Geach and Max Black. Oxford: Basil Blackwell (1960)Google Scholar
  27. 27.
    Furth, M.: The Basic Laws of Arithmetic: Expositition of the system. University of California Press, Berkeley (1964)Google Scholar
  28. 28.
    Gilmore, P.C.: Natural Deduction Based Set Theories: A New Resolution of the Old Paradoxes. J. of Symbolic Logic 51, 394–411 (1986)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Kanda, A.: When are Two Effectively given Domains Equal? In: Weihrauch, K. (ed.) GI-TCS 1979. LNCS, vol. 67, Springer, Heidelberg (1979)Google Scholar
  30. 30.
    Kanda, A.: Fully Effective Solutions of Recursive Domain Equations. In: Becvar, J. (ed.) MFCS 1979. LNCS, vol. 74, Springer, Heidelberg (1979)Google Scholar
  31. 31.
    Kanda, A.: Constructive Category Theory. In: Gruska, J., Chytil, M.P. (eds.) MFCS 1981. LNCS, vol. 118, Springer, Heidelberg (1981)Google Scholar
  32. 32.
    Kanda, A.: Recursion Theorems and Effective Domains. Annals of Pure and Applied Logic 38, 289–300 (1988)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Kleene, S.C.: Introduction to Metamathematics. North-Holland Publishing Co., Amsterdam (1952)MATHGoogle Scholar
  34. 34.
    Kleene, S.C., Rosser, J.S.: The Inconsistency of Certain Formal Logics. Annals of Mathematics 36, 630–636 (1935)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Kripke, S.: Semantical Analysis of Modal Logic I. Normal Modal Propositional Calculi. Zeitschrift f. Math. Logik und Grundlagen d. Math. 9 (1963)Google Scholar
  36. 36.
    Leśniewski, S.: Foundations of the General Theory of Sets. In: Srzednicki, S., Rickey, B. (eds.) Stanislaw Leśniewsky Collected Works, pp. 128–173. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  37. 37.
    Lewis, D.: Counterpart Theory and Quantified Modal Logic. J. of Philosophy 65, 113–126 (1968); Reprinted in Loux, M.J.(ed.), The Possible and the Actual (Cornell U.P.) (1979)CrossRefGoogle Scholar
  38. 38.
    Lewis, D.K.: On the Plurality of Worlds. Basil Blackwell, Oxford (1986)Google Scholar
  39. 39.
    Lewis, D.K.: Parts of Classes. Basil Blackwell, Oxford (1991)MATHGoogle Scholar
  40. 40.
    Mal’cev, A.I.: The Mathematics of Algebraic Systems. North-Holland, Amsterdam (1971)Google Scholar
  41. 41.
    Myhill, J., Shepardson, J.C.: Efective operations on partial recursive functions. Zeitschrift f. Math. Logik und Grundlagen d. Mathematik textbf1, pp. 310–317 (1955)Google Scholar
  42. 42.
    Orlowska, E.: Semantics of Vague Concepts. In: Dorn, G., Weingartner, P. (eds.) Foundations of Logic and Linguistics, Problems and Their Solutions, Plenum Press, NewYork (1985)Google Scholar
  43. 43.
    Parsons, C.: Frege’s Theory of Number. In: Parsons C., Mathematics in Philosophy: Selected Essays, Cornell University Press, Ithaca (1983)Google Scholar
  44. 44.
    Pawlak, Z.: Rough Sets, Algebraic and Topological Approaches. International Journal of Computer and Information Sciences 11, 341–366 (1982)MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Pawlak, Z.: Rough Sets: Theoretical aspects of reasoning about data. Kluwer, Dordrecht (1991)MATHGoogle Scholar
  46. 46.
    Pawlak, Z.: Rough Set Elements. In: Polkowski, L., Skowron, A., Kacprzyk, J. (eds.) Rough Sets in Knowledge Discovery: Methodology and Applications. Studies in Fuzziness and Soft Computing, vol. 18, Springer, Heidelberg (1998)Google Scholar
  47. 47.
    Plotkin, G.: A Power Domain Construction. SIAM Journal on Computing 5, 452–487 (1976)MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. Journal of Approximate Reasoning 15(4), 333–365 (1996)MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Polkowski, L., Skowron, A.: Towards adaptive calculus of granules. In: Zadeh, L.A., Kacprzyk, J. (eds.) Computing with Words in Information/Intelligent Systems 1: Foundations. Studies in Fuzziness and Soft Computing, vol. 30, pp. 201–228. Springer- Verlag Group (Physica-Verlag), Heidelberg (1999)Google Scholar
  50. 50.
    Polkowski, L., Skowron, A.: Rough-neuro computing. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, p. 57. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  51. 51.
    Polkowski, L.: On Asymptotic Properties of Rough-Set-Theoretic Approximations. Fractal Dimension, Exact Sets, and Rough Inclusion in Potentially Infinite Information Systems. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, p. 167. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  52. 52.
    Polkowski, L.: On Fractal Dimension in Information Systems: Towards exact sets in infinite information systems. Fundamenta Informaticae 50, 3–4 (2002)MathSciNetGoogle Scholar
  53. 53.
    Rice, H.G.: On Completely recursively enumerable classes and their key arrays. J. of Symbolic Logic 21, 304–308 (1956)MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Robinson, A.: Non-Standard Analysis. North-Holland, Amsterdam (1970)Google Scholar
  55. 55.
    Russell, B.A.W.: Letter to Frege. In: [62, pp. 124-125] (1902) Google Scholar
  56. 56.
    Scott, D.: Continuous lattices. Lecture Notes in Math., vol. 274, pp. 97–136. Springer, Berlin (1972)Google Scholar
  57. 57.
    Scott, D.: Combinators and Classes. In: Böhm, C. (ed.) Lambda-Calculus and Computer Science Theory. LNCS, vol. 37, pp. 1–26. Springer, Heidelberg (1975)CrossRefGoogle Scholar
  58. 58.
    Scott, D.: Data Types as Lattices. SIAM Journal on Computing 5, 522–587 (1976)MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Smyth, M.: Power Domains. Journal of Computer and Systems Science 16, 23–36 (1978)MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Smyth, M., Plotkin, G.: The Categorical Solutions of Recursive Domain Equations. In: Proc. of the 18th FOCS Conference (1977)Google Scholar
  61. 61.
    Streicher, T.: Scott Domains, Computability and the Definability Problem, Diplomarbeit, Johanenes Kepler Universitat, Lintz. CAMP Report 82-7 (1982)Google Scholar
  62. 62.
    van Heijenoort, J.: From Frege to Godel: A Source Book in Mathematical Logic, 1879 - 1931. Harvard University Press, Cambridge (1967)MATHGoogle Scholar
  63. 63.
    Wiweger, A.: On Topological Rough Sets. Bulletin of the Polish Academy of Sciences, Mathematics 37(16) (1989)Google Scholar
  64. 64.
    Wright, C.: Frege’s Conception of Numbers as Objects. Scots Philosophical Monographs, textbf2. Aberdeen University Press, Aberdeen (1983)MATHGoogle Scholar
  65. 65.
    Yao, Y.Y.: Constructive and Algebraic Methods of the Theory of Rough Sets. Journal of Information Sciences 109, 21–47 (1998a)MATHCrossRefGoogle Scholar
  66. 66.
    Yao, Y.Y.: On Generalizing Pawlak Approximation Operators. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 289–307. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Peter Apostoli
    • 1
  • Akira Kanda
    • 2
  • Lech Polkowski
    • 3
    • 4
  1. 1.The University of PretoriaPretoriaSouth Africa
  2. 2.The University of TorontoCanada
  3. 3.Polish Japanese Institute of Information TechnologyWarsawPoland
  4. 4.The University of Warmia and MazuryOlsztynPoland

Personalised recommendations