Advertisement

A Machine Learning Approach for Modeling Algorithm Performance Predictors

  • Joaquin Perez O.
  • Rodolfo A. Pazos R.
  • Juan Frausto S.
  • Laura Cruz R.
  • Hector Fraire H.
  • Elizabeth Santiago D.
  • Norma E. Garcia A.
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3131)

Abstract

This paper deals with heuristic algorithm selection, which can be stated as follows: given a set of solved instances of a NP-hard problem, for a new instance to predict which algorithm solves it better. For this problem, there are two main selection approaches. The first one consists of developing functions to relate performance to problem size. In the second more characteristics are incorporated, however they are not defined formally, neither systematically. In contrast, we propose a methodology to model algorithm performance predictors that incorporate critical characteristics. The relationship among performance and characteristics is learned from historical data using machine learning techniques. To validate our approach we carried out experiments using an extensive test set. In particular, for the classical bin packing problem, we developed predictors that incorporate the interrelation among five critical characteristics and the performance of seven heuristic algorithms. We obtained an accuracy of 81% in the selection of the best algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertsekas: Linear Network Optimization, Algorithms and Codes. MIT Press, Cambridge(1991) Google Scholar
  2. 2.
    Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimizations. IEEE Transactions on Evolutionary Computation 1, 67–82 (1997)CrossRefGoogle Scholar
  3. 3.
    Borghetti, B.J.: Inference Algorithm Performance and Selection under Constrained Resources. MS Thesis. AFIT/GCS/ENG/96D-05 (1996)Google Scholar
  4. 4.
    Fink, E.: How to Solve it Automatically, Selection among Problem-solving Methods. In: Proceedings of the Fourth International Conference on AI Planning Systems AIPS 1998, pp. 128–136 (1998)Google Scholar
  5. 5.
    Soares, C., Brazdil, P.: Zoomed Ranking, Selection of Classification Algorithms Based on Relevant Performance Information. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 126–135. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Basse, S.: Computer Algortihms, Introduction to Design and Analysis. Editorial Addison-Wesley Publishing Compay, Reading (1998)Google Scholar
  7. 7.
    Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation Algorithms for Bin-Packing, a Survey. In: Approximation Algorithms for NP-hard Problems, pp. 46–93. PWS, Boston (1997)Google Scholar
  8. 8.
    Ducatelle, F., Levine, J.: Ant Colony Optimisation for Bin Packing and Cutting Stock Problems. In: Proceedings of the UK Workshop on Computational Intelligence.Edinburgh (2001)Google Scholar
  9. 9.
    Pérez, J., Pazos, R.A., Vélez, L., Rodríguez, G.: Automatic Generation of Control Parameters for the Threshold Accepting Algorithm . LNCS (LNAI), vol. 2313, pp. 119–127. Springer, Heidelberg (2002)Google Scholar
  10. 10.
    Micheals, R.J., Boult, T.E.: A Stratified Methodology for Classifier and Recognizer Evaluation. In: IEEE Workshop on Empirical Evaluation Methods in Computer Vision (2001)Google Scholar
  11. 11.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Publishers, San Francisco (2000)Google Scholar
  12. 12.
    Ross, P., Schulenburg, S., Marin-Blázquez, J.G., Hart, E.: Hyper-heuristics, Learning to Combine Simple Heuristics in Bin-packing Problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 942–948. Morgan Kaufmann, San Francisco (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Joaquin Perez O.
    • 1
  • Rodolfo A. Pazos R.
    • 1
  • Juan Frausto S.
    • 2
  • Laura Cruz R.
    • 3
  • Hector Fraire H.
    • 3
  • Elizabeth Santiago D.
    • 3
  • Norma E. Garcia A.
    • 3
  1. 1.Centro Nacional de Investigacion y Desarrollo Tecnologico (CENIDET)CuernavacaMéxico
  2. 2.ITESMCuernavacaMexico
  3. 3.Instituto Tecnologico de Ciudad MaderoMexico

Personalised recommendations