Advertisement

Interoperability of Ontologies Using Conceptual Graph Theory

  • Dan Corbett
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3127)

Abstract

One of the main goals in achieving smarter management and retrieval of information for the future is in ensuring interoperability among knowledge bases. The achievement of this ultimate goal in knowledge management requires the development of semantic representations and methods for comparison which will allow a semantic interoperability of knowledge bases. This paper will examine technologies which can be used to implement these goals. We explore current technologies that lie behind developments in subsumption theory, intelligent cooperating agents and ontologies, and explore how these technologies can be applied to the problems facing knowledge management. This paper offers a treatment of the semantics of comparison for the ontologies underlying knowledge bases. Our goal is to match and filter information retrieved from a knowledge base by using an ontology created by the user. This will require defining means to compare, link or merge ontologies. This work is significant in that our formal definition of ontology dispenses with the class/instance boundary, thus saving complexity, while allowing a filtering mechanism for facilitating interoperability.

Keywords

knowledge representation automated reasoning ontology knowledge servers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mineau, G.W.: A First Step toward the Knowledge Web: Interoperability Issues among Conceptual Graph Based Software Agents Part I. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, p. 250. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Sowa, J.F.: Negotiation Instead of Legislation (2002), Available at: www.jfsowa.com/talks/negotiat.htm
  3. 3.
    van Zyl, J.D., Corbett, D.R.: A Framework for Comparing Methods for Using or Reusing Multiple Ontologies in an Application. In: Proc. Eighth International Conference on Conceptual Structures, Shaker Verlag, Darmstadt (2000)Google Scholar
  4. 4.
    Mugnier, M.-L., Chein, M.: Représenter des Connaissances et Raisonner avec des Graphes. Revue d’Intelligence Artificielle 10(6), 7–56 (1996)zbMATHGoogle Scholar
  5. 5.
    Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing. In: Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analysis and Knowledge Representation, Italy, Kluwer Academic Publishers, Dordrecht (2003), Substantial revision of paper presented at the International Workshop on Formal Ontology, Padova, (March 1993) Google Scholar
  6. 6.
    McGuinness, D.L.: Ontologies Come of Age. In: Fensel, D. (ed.) Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential, MIT Press, Cambridge (2003)Google Scholar
  7. 7.
    McGuinness, D.L., Fikes, R., Hendler, J., Stein, L.A.: DAML+OIL: An Ontology Language for the Semantic Web. IEEE Intelligent Systems 17(5), 72–80 (2002)CrossRefGoogle Scholar
  8. 8.
    McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: The Chimaera Ontology Environment. In: Proc. Seventeenth National Conference on Artificial Intelligence, Austin, Texas, USA (2000)Google Scholar
  9. 9.
    Dean, M., Connolly, D., Harmelen, F.v., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language 1.0 Reference (2002), Available at: http://www.w3.org/TR/owl-ref/
  10. 10.
    Bechhofer, S., Carr, L., Goble, C., Kampa, S., Miles-Board, T.: The Semantics of Semantic Annotation. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Heymans, S., Vermeir, D.: A Defeasible Ontology Language. In: Proc. International Conference on Ontologies, Databases and Applications of Semantics. LNCS (LNAI), vol. 2519, Springer Verlag, Irvine (2002)Google Scholar
  12. 12.
    Smith, M.K.: Web Ontology Issues. W3C, Issue# 5.10 (2002) Google Scholar
  13. 13.
    Corby, O., Dieng, R., Hébert, C.: A Conceptual Graph Model for W3C Resource Description Framework. In: Proc. Eigth International Conference on Conceptual Structures. LNCS (LNAI), vol. 1867, Springer-Verlag, Darmstadt, Germany (2000)Google Scholar
  14. 14.
    Chein, M., Mugnier, M.-L.: Conceptual Graphs: Fundamental Notions. Revue d’Intelligence Artificielle 6(4), 365–406 (1992)Google Scholar
  15. 15.
    Amati, G., Ounis, I.: Conceptual Graphs and First Order Logic. The Computer Journal 43(1), 1–12 (2000)zbMATHCrossRefGoogle Scholar
  16. 16.
    Sowa, J.F.: Conceptual Graphs Summary. In: Conceptual Structures: Current Research and Practice, Ellis Horwood, Chichester (1992)Google Scholar
  17. 17.
    Willems, M.: Projection and Unification for Conceptual Graphs. In: Proc. Third International Conference on Conceptual Structures. LNCS (LNAI), vol. 954, Springer-Verlag, Santa Cruz (1995)Google Scholar
  18. 18.
    Corbett, D.R.: Conceptual Graphs with Constrained Reasoning. Revue d’Intelligence Artificielle 15(1), 87–116 (2001)Google Scholar
  19. 19.
    Leclère, M.: Reasoning with Type Definitions. In: Proc. Fifth International Conference on Conceptual Structures. LNCS (LNAI), vol. 1257, Springer-Verlag, Seattle (1997)Google Scholar
  20. 20.
    Corbett, D.R.: Reasoning and Unification over Conceptual Graphs. Kluwer Academic Publishers, New York (2003)zbMATHGoogle Scholar
  21. 21.
    Reynolds, J.C.: Transformational Systems and the Algebraic Structure of Atomic Formulas. Machine Intelligence 5 (1970)Google Scholar
  22. 22.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  23. 23.
    Knight, K.: Unification: A Multidisciplinary Survey. ACM Computing Surveys 21(1), 93–124 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Aït-Kaci, H., Nasr, R.: LOGIN: A Logic Programming Language with Built-in Inheritance. Journal of Logic Programming 3 (1986)Google Scholar
  25. 25.
    Corbett, D.R.: A Framework for Conceptual Graph Unification. In: Proc. Eighth International Conference on Conceptual Structures, Shaker Verlag, Darmstadt (2000)Google Scholar
  26. 26.
    Corbett, D.R., Woodbury, R.F.: Unification over Constraints in Conceptual Graphs. In: Proc. Seventh International Conference on Conceptual Structures, Springer-Verlag, Blacksburg (1999)Google Scholar
  27. 27.
    Corbett, D.R.: Reasoning with Conceptual Graphs. In: Stumptner, M., Corbett, D.R., Brooks, M. (eds.) Canadian AI 2001. LNCS (LNAI), vol. 2256, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    Buccafurri, F., Lax, G., Rosaci, D., Ursino, D.: A User Behavior-Based Agent for Improving Web Usage. In: Proc. International Conference on Ontologies, Databases and Applications of Semantics. LNCS (LNAI), vol. 2519, Springer-Verlag, Irvine (2002)Google Scholar
  29. 29.
    Arara, A.A., Benslimane, D.: Ontology Concept Extraction from Terminologies. In: Proc. Eleventh International Conference on Intelligent Systems, ISCA, Boston (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dan Corbett
    • 1
  1. 1.Intelligent Systems Laboratory School of Computer and Information ScienceUniversity of South AustraliaAdelaide

Personalised recommendations