Shock Waves pp 651-656 | Cite as

Shock-tube study of ethanol pyrolysis

  • Y. Hidaka
  • H. Wakamatsu
  • M. Moriyama
  • T. Koike
  • K. Yasunaga
Conference paper


The high temperature pyrolysis of ethanol was studied behind reflected shock waves using a single-pulse (reaction time between 0.7 and 3.9 ms), time-resolved IR-absorption (3.39 μm) method. The studies were done using mixtures, 5.0%, 2.5% and 1.0% C2H5OH diluted with Ar, in the temperature range 1000 – 1700 K at total pressures between 1.4 and 3.6 atm. From a computer-simulation study, a 153-reaction mechanism that could explain all our data was constructed. The rate constant expressions of reactions (1) – (16) at high temperatures in the ethanol pyrolysis were discussed. It was found that, in the ethanol pyrolysis under our experimental conditions, reactions (1) and (3) played an important role as the initiation reaction, and reaction (7) was indispensable to interpret our data.


Shock Tube Thermochemical Data Reflect Shock Wave High Temperature Pyrolysis JANAF Thermochemical Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Hidaka, T. Nakamura, A. Miyauchi, T. Shiraishi, H. Kawano: Int. J. Chem. Kinet. 21, 643 (1989)CrossRefGoogle Scholar
  2. 2.
    Y. Hidaka, T. Higashihara, N. Ninomiya, H. Oshita, H. Kawano: J. Phys. Chem. 97, 10977 (1993)CrossRefGoogle Scholar
  3. 3.
    Y. Hidaka, T. Taniguchi, H. Tanaka, T. Kamesawa, K. Inami, H. Kawano: Combust. Flame 92, 365 (1993)CrossRefGoogle Scholar
  4. 4.
    M.W. Chase et al: JANAF Thermochemical Tables. 3rd Ed. J. Phys. Chem. Ref. Data 1, (1985)Google Scholar
  5. 5.
    A. Burcat, B. McBride: Ideal gas thermodynamic data for combustion and air-pollution use. TAE Report 804 (1997)Google Scholar
  6. 6.
    Y. Hidaka, K. Hattor, T. Okuno, K. Inami, T. Abe, T. Koike: Combust. Flame 107, 401 (1996)CrossRefGoogle Scholar
  7. 7.
    Y. Hidaka, K. Sato, M. Yamane: Combust. Flame 123, 1 (2000)CrossRefGoogle Scholar
  8. 8.
    K. Sato, Y. Hidaka: Combust. Flame 122, 291 (2000)CrossRefGoogle Scholar
  9. 9.
    Y. Hidaka, T. Higashihara, N. Ninomiya, H. Masaoka, T. Nakamura, H. Kawano: Int. J. Chem. Kinet. 28, 137 (1996)CrossRefGoogle Scholar
  10. 10.
    Y. Hidaka, K. Sato, Y. Henmi, H. Tanaka, K. Inami: Combust. Flame 118, 340 (1999)CrossRefGoogle Scholar
  11. 11.
    Y. Hidaka, T. Nishimori, K. Sato, Y. Henmi, R. Okuda, K. Inami, T. Higashihara: Combust. Flame 117, 755 (1999)CrossRefGoogle Scholar
  12. 12.
    Y. Hidaka, S. Kubo, H. Hoshikawa, H. Wakamatsu: ‘Shock-tube Study of Acetaldehyde Pyrolysis’, In: Proc. 24th Symp. Shock Waves, Beijing, China, 2004, ed. by Z. JiangGoogle Scholar
  13. 13.
    Y. Hidaka, K. Sato, H. Hoshikawa, T. Nishimori, R. Takahashi, H. Tanaka, K. Inami, N. Ito: Combust. Flame 120, 245 (2000)CrossRefGoogle Scholar
  14. 14.
    T. Yamabe, M. Koizumi, K. Yamashita, A. Tachibana: J. Am. Chem. Soc. 106, 2255 (1984)CrossRefGoogle Scholar
  15. 15.
    J. Park, R.S. Zhu, and M.C. Lin: J. Chem. Phys. 117, 3224 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    N.M. Marinov: Int. J. Chem. Kinet. 31, 183 (1999)CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Y. Hidaka
    • 1
  • H. Wakamatsu
    • 1
  • M. Moriyama
    • 1
  • T. Koike
    • 2
  • K. Yasunaga
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceEhime UniversityMatsuyamaJapan
  2. 2.Department of ChemistryNational Defense AcademyYokosukaJapan

Personalised recommendations