Advertisement

Shock Waves pp 633-638 | Cite as

Modeling iron particle synthesis in a shock wave reactor

  • A. Kowalik
  • P. Roth
Conference paper

Abstract

In the present theoretical study, the formation and growth of iron particles originating from iron pentacarbonyl Fe(CO)5 decomposition behind weak reflected shock waves is presented. A simple model accounting for chemical reaction, homogeneous nucleation, surface growth, coagulation, and coalescence was used. The calculated results were compared to experimental data obtained from Time-Resolved-Laser-Induced-Incandescence (TR-LII) and high resolution transmission electron microscope (HRTEM).

Keywords

High Resolution Transmission Electron Microscope Primary Particle High Resolution Transmission Electron Microscope Particle Number Concentration Particle Coagulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.A. Bhaskaran, P. Roth: Prog. Energy Combust. Sei. 28, 151 (2002)CrossRefGoogle Scholar
  2. 2.
    J.-F. Bilodeau, P. Proulx: Aerosol Sei. Tech. 24, 175 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    S.L. Girshick, CP. Chiu: J. Chem. Phys. 93, 1273 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    S. Panda, S.E. Pratsinis: NanoStruct. Mater. 5, 755 (1995)CrossRefGoogle Scholar
  5. 5.
    Y. Singh, J.R.N. Javier, S.E. Ehrman, M.H. Magnusson, K. Deppert: J. Aerosol Sei. 33, 1309 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    F.E. Kruis, K.A. Küsters, S.E. Pratsinis: Aerosol Sei. Tech. 19, 514 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    A. Giesen, A. Kowalik, P. Roth: Phase Trans, (submitted)Google Scholar
  8. 8.
    S.K. Friedlander: Smoke, Dust, and Haze (Oxford University Press, New York, Oxford 2000)Google Scholar
  9. 9.
    S. Vemury, K.A. Küsters, S.E. Pratsinis: J. Colloid Interf. Sei. 165, 53 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    M.K. Wu, S.K. Friedlander: J. Colloid Interf. Sei. 159, 246 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    CM. Sorensen: J. Colloid Interf. Sei. 186, 447 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    A. Schmidt-Ott: J. Aerosol Sei. 19, 553 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Xing, D.E. Rosner: J. Nanoparticle Res. 1, 277 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Ph. Buffat, J-P. Borel: Phys. Rev. A 13, 2287 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    R.C Tolman: J. Chem. Phys. 17, 333 (1949)ADSCrossRefGoogle Scholar
  16. 16.
    R.M. German: Sintering Theory and Practice. (John Wiley Sz Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore 1996)Google Scholar
  17. 17.
    S. Vemury, S. E. Pratsinis: J. Aerosol Sei. 26, 175 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    K.E.J. Lehtinen, R.S. Windeler, S.K. Friedlander: J. Aerosol Sei. 27, 883 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    R. Starke, B. Kock, P. Roth: Shock Waves (accepted)Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. Kowalik
    • 1
  • P. Roth
    • 1
  1. 1.Institut für Verbrennung und GasdynamikUniversität Duisburg-EssenDuisburgGermany

Personalised recommendations