Shock Waves pp 609-614 | Cite as

Shock tube studies on the high temperature chemical kinetics of allyl radicals: reactions with C2H2, CH4, H2 and C3H5 at 1000–1400 K

  • S. J. Isemer
  • K. Luther
Conference paper


Rate constants of various allyl radical reactions have been measured at combustion relevant temperatures of 1000 to 1400 K. Time resolved absorption spectroscopy was used under reflected shock wave conditions in highly diluted mixtures of the reagents in argon. Studies on the thermal dissociation of 1,5-hexadiene as a precursor reaction of allyl radicals showed pressure dependence between 0.35 and 14 bar with temperature dependent approach of the high pressure limit. Very weak temperature dependence for the C3H5 + C3H5 combination is established and thermal dissoziations rates of allyl itself were measured above 1170 K. Experimental rate constant for the C3H5 + H2 and C3H5 + CH4 abstraction reactions are reported first time. The important reaction of allyl with acetylene was now measured directly in a combustion relevant temperature range, 1060-1320 K, resulting in k=10(13.6±6.5) exp [−(90±10) kJ mol−1 /RT] cm3 mol−1 s−1. Branching between two product channels occurs with 95 % towards C5H6 + H. Absolute high temperature UV absorption spectra are reported for allyl and cyclopentadiene.


Polycyclic Aromatic Hydrocarbon Shock Tube Thermal Dissociation Reflect Shock Wave Abstraction Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.L. Allara, D. Edelson: Int. J. Chem. Kin. 7, 479 (1975)CrossRefGoogle Scholar
  2. 2.
    S.D. Thomas, A. Barghava, P.R. Westmoreland, R.P. Lindstedt, G. Skevis: Bull. Soc. Chim. Belg. 105, 501 (1996)Google Scholar
  3. 3.
    R. Louw: Recueil 90, 469 (1971); R.L. Akers, J.J. Throssell: J. Chem. Soc. Chem. Commun. 13, 432 (1966)CrossRefGoogle Scholar
  4. 4.
    W. Tsang: J. Phys. Chem. Ref. Data 20, 221 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    U. Löser, K. Scherzer, K. Weber: Z. Phys. Chemie 270, 237 (1989)CrossRefGoogle Scholar
  6. 6.
    N.M. Marinov, M.J. Costaldi, CF. Melius, W. Tsang: Combust. Sei. and Tech. 128, 295 (1997)CrossRefGoogle Scholar
  7. 7.
    D. Nohara, T. Sakai: Ind. Eng. Chem. Fundam. 19, 340 (1980)CrossRefGoogle Scholar
  8. 8.
    N. Nakashima, K. Yoshihara: Laser Chem. 7, 177 (1987)CrossRefGoogle Scholar
  9. 9.
    H.E. van den Bergh, A.B. Callear: Ber. Bunsenges. Phys. Chem. 66, 268 (1970)Google Scholar
  10. 10.
    T. Gilbert, I. Fischer, P. Chen: J. Chem. Phys. 113, 561 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    H.J. Deyerl, I. Fischer, P. Chen: J. Chem. Phys. 110, 1450 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    A. Miyoshi, N. Yamauchi, T. Harada, K. Kosaka, M. Koshi, H. Matsui: In: Fourth Inter-national Conference on Chemical Kinetics, 302 (1997)Google Scholar
  13. 13.
    W. Tsang, J.A. Walker: J. Phys. Chem. 96, 8378 (1992)CrossRefGoogle Scholar
  14. 14.
    A.E. Croce, K. Henning, K. Luther, J. Troe: Phys. Chem. Chem. Phys. 1, 5345 (1999)CrossRefGoogle Scholar
  15. 16.
    W.R. Roth, F. Bauer, A. Beitat, T. Ebbrecht, M. Wüstefeld: Chem. Ber. 124, 1453 (1991)CrossRefGoogle Scholar
  16. 17.
    D.M. Golden, N.A. Gac, S.W. Benson: J.Am. Chem. Soc. 91, 2136 (1969); J.B. Homer, F.P. Lossing: Can. J. Chem. 44, 2211 (1966)CrossRefGoogle Scholar
  17. 18.
    A.M. Dean: J. Phys. Chem. 89, 4600 (1985)CrossRefGoogle Scholar
  18. 19.
    L.W. Picket, E. Paddock, E. Sackter: J. Am. Chem. Soc. 62, 1073 (1941)CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • S. J. Isemer
    • 1
  • K. Luther
    • 1
  1. 1.Institute of Physical ChemistryUniversity of GöttingenGöttingenGermany

Personalised recommendations