Shock Waves pp 603-608 | Cite as

Shock-tube study of acetaldehyde pyrolysis

  • Y. Hidaka
  • S. Kubo
  • T. Hoshikawa
  • H. Wakamatsu
Conference paper


The high temperature pyrolysis of acetaldehyde was studied behind reflected shock waves using a single-pulse (reaction time between 1.5 and 2.9 ms), time-resolved IR-absorption (3.39 µm) and UV-absorption (200 nm) methods. The studies were done using mixtures, 5.0% CH3CHO, 4.0% CH3CHO and 2.0% CH3CHO diluted with Ar, in the temperature range 10002–1700 K at total pressures between 1.2 and 3.0 atm. Prom a computer-simulation study, a 58-reaction mechanism that could explain all our data was constructed. The rate constant expressions of reactions (1)–(11) at high temperatures in the CH3CHO pyrolysis were discussed. It was found that, under our experimental conditions, reactions (1), (3) and (4) played an important role as the initiation reaction and reactions (6) and (8) also played a role in the CH3CHO pyrolysis.


Shock Tube Reflect Shock Wave Initiation Reaction High Temperature Pyrolysis JANAF Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. B. Colket, D. W. Naegeli, I. Glassman: Int. J. Chem. Kinet. 7, 223 (1975)CrossRefGoogle Scholar
  2. 2.
    F. O. Rice, K. F. Herzfeld: J. Am. Chem. Soc. 56, 284 (1934)CrossRefGoogle Scholar
  3. 3.
    J. Ernst, K. Spindler, H. Gg. Wagner: Ber. Bunsenges. Phys. Chem. 7, 645 (1976)CrossRefGoogle Scholar
  4. 4.
    R. D. Kern, K. Xie: Prog. Energ Combust. Sci. 17, (1991)Google Scholar
  5. 5.
    Y. Hidaka, T. Nakamura, A. Miyauchi, T. Shiraishi, H. Kawano: Int. J. Chem. Kinet. 21, 643 (1989)CrossRefGoogle Scholar
  6. 6.
    Y. Hidaka, T. Higashihara, N. Ninomiya, H. Oshita, H. Kawano: J. Phys. Chem. 97, 10977 (1993)CrossRefGoogle Scholar
  7. 7.
    Y. Hidaka, T. Taniguchi, H. Tanaka, T. Kamesawa, K. Inami, H. Kawano: Combust. Flame 92, 365 (1993)CrossRefGoogle Scholar
  8. 8.
    M. W. Chase et al. 3rd Ed.: J. Phys. Chem. Ref. Data, 1(1), (1985)Google Scholar
  9. 9.
    A. Burcat, B. McBride: Ideal gas thermodynamic data for combustion and air-pollution use. TAE Report 804 (1997)Google Scholar
  10. 10.
    Y. Hidaka, K. Hattori, T. Okuno, K. Inami, T. Abe, T. Koike: Combust. Flame 107, 401 (1996)CrossRefGoogle Scholar
  11. 11.
    Y. Hidaka, K. Sato, M. Yamane: Combust. Flame, 123, 1 (2000)CrossRefGoogle Scholar
  12. 12.
    K. Sato, Y. Hidaka: Combust. Flame, 122, 291 (2000)CrossRefGoogle Scholar
  13. 13.
    D. L. Bauich, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz: J. Phys. Chem. Ref. Data, 21, 411 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    J. M. Martell, H. Yu, J. D Goddard: Mol. Phys. 92, 497 (1997)ADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Y. Hidaka
    • 1
  • S. Kubo
    • 1
  • T. Hoshikawa
    • 1
  • H. Wakamatsu
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceEhime UniversityMatsuyamaJapan

Personalised recommendations