Advertisement

Shock Waves pp 585-590 | Cite as

Silane oxidation behind reflected shock waves

  • E. L. Petersen
  • D. M. Kalitan
  • M. J. A. Rickard
  • M. W. Crofton
Conference paper

Abstract

Several shock-tube experiments were performed to study the oxidation of argon- diluted SiH4/O2 mixtures behind reflected shock waves for temperatures between 1080 and 1780 K at pressures near 1 atm. Reaction progress was monitored using infrared emission from SiH4, FM absorption of SiH2, and chemiluminescence from OH*. Because of the difficulty in making premixed mixtures of silane and oxygen, these experiments produced the first shock- tube data on silane oxidation without the presence of another oxidizing species such as H2. A set of reactions was employed to model the OH* time history, and a reaction involving SiH + O2 was required to reproduce the OH* behavior. When compared to an existing chemical kinetics model of high-temperature silane oxidation, the agreement between data and model for the SiH2 and SiH4 measurements is not good, indicating some improvement in the mechanism is needed.

Keywords

Time History Shock Tube AIAA Paper Reflect Shock Wave Pyrolysis Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Wooldridge: Prog. Energy Combust. Sei. 24, 63 (1998)CrossRefGoogle Scholar
  2. 2.
    T. Takahashi, K. Hagiwara, Y. Egashira, H. Komiyama: J. Elec. Soc. 143, 1355 (1996)CrossRefGoogle Scholar
  3. 3.
    A.G. McLain, C.J. Jachimowski, R.C. Rogers: NASA Technical Paper 2114 (1983)Google Scholar
  4. 4.
    E.L. Petersen, M.W. Crofton: AIAA Paper 2002-3875 (2002)Google Scholar
  5. 5.
    E.L. Petersen, D.M. Kalitan, M.J.A. Rickard: J. Prop. Power, in press (2004)Google Scholar
  6. 6.
    V.l. Golovitchev, C. Bruno: J. Prop. Power 15, 92 (1998)CrossRefGoogle Scholar
  7. 7.
    V.l. Babushok, W. Tsang, D.R. Burgess, M.R. Zachariah: Proc. Comb. Inst. 27, 2431 (1998)CrossRefGoogle Scholar
  8. 8.
    S. Kondo, K. Tokuhashi, A. Takahashi, M. Raise: Combust. Sei. Tech. 159, 391 (2000)CrossRefGoogle Scholar
  9. 9.
    M.W. Crofton, E.L. Petersen: These Proceedings, Paper 2161 (2004)Google Scholar
  10. 10.
    E.L. Petersen, M.W. Crofton: J. Phys. Chem. A 107, 10988 (2003)CrossRefGoogle Scholar
  11. 11.
    E.L. Petersen, D.M. Kalitan, M.J.A. Rickard: AIAA Paper 2003-4493 (2003)Google Scholar
  12. 12.
    J.M. Hall, E.L. Petersen: AIAA Paper 2004-4164 (2004)Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • E. L. Petersen
    • 1
  • D. M. Kalitan
    • 1
  • M. J. A. Rickard
    • 2
  • M. W. Crofton
    • 2
  1. 1.Mechanical EngineeringUniversity of Central FloridaOrlandoUSA
  2. 2.Space Materials LaboratoryThe Aerospace CorporationEl SegundoUSA

Personalised recommendations