Shock Waves pp 511-516 | Cite as

Numerical simulation of steady shock and detonation wave configurations in a supersonic chemically reacting flow

  • A. V. Trotsyuk
  • A. N. Kudryavtsev
  • M. S. Ivanov
Conference paper


In studying the detonation phenomenon in gas mixtures, much attention is traditionally paid to investigation of the multifront (cellular) structure of a self-sustained unsteady detonation wave (DW) propagating in a mixture at rest, determination of the critical conditions of detonation initiation (critical value of the initiation energy), and marginal regimes of DW propagation.


Detonation Wave Wedge Angle Mach Stem Mach Reflection Oblique Shock Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.M. Roy: Comptes rendus a lAcademie des Sciences. 222 (1947)Google Scholar
  2. 2.
    J.S. Shepherd: ‘Detonation Waves and Propulsion’. In: Combustion in High-Speed Flows, ed. by J. Buckmaster et al. (Kluwer Academic Publishers, Netherlands 1994) pp. 373–420Google Scholar
  3. 3.
    J.P. Sislian: ‘Detonation-Wave Ramjets’. In: Progress in Astronautics and Aeronautics, (AIAA, Washington DC 2000) 189, pp. 823–889Google Scholar
  4. 4.
    M.S. Ivanov, D. Vandromme, V.M. Fomin, A.N. Kudryavtsev, A. Hadjadj, D.V. Khotyanovsky: Shock Waves 11, 199 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    G. Ben-Dor, M.S. Ivanov, E.I. Vasilev, T. Elperin: Progress in Aerospace Sciences 38, 347 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    M.S. Ivanov, S.F. Gimelshein, G.N. Markelov: Computers Math. Applic. 35, 113 (1998)Google Scholar
  7. 7.
    M.S. Ivanov, G.N. Markelov, A.N. Kudryavtsev, S.F. Gimelshein: AIAA Journal 36, 2079 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    V.P. Korobeinikov, V.A. Levin, V.V Markov, and G.G Chernyi: Astronaut. Acta 17, 529 (1972)Google Scholar
  9. 9.
    D.R. White: ‘Density Induction Times in Very Lean Mixtures of D2, H2, C2H2, and C2H4 with O2’. In: Proceedings of the 11th Symposium (Int.) on Combustion, (The Combustion Institute, Berkeley 1966) pp. 147–154Google Scholar
  10. 10.
    Yu.A. Nikolaev, P.A. Fomin: Combustion, Explosion, and Shock Waves 18, 53 (1982)CrossRefGoogle Scholar
  11. 11.
    Yu.A. Nikolaev, D.V. Zak: Combustion, Explosion, and Shock Waves 24, 87 (1988)Google Scholar
  12. 12.
    A.V. Trotsyuk: Combustion, Explosion and Shock Waves 35, 549 (1999)CrossRefGoogle Scholar
  13. 13.
    S. Yamamoto, H. Daiguji: Comput. Fluids 22, 259 (1993)MathSciNetCrossRefGoogle Scholar
  14. 14.
    P. Batten, M.A. Leschziner, U.C. Goldberg: J. Comput. Phys. 137, 38 (1997)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    F. Coquel, B. Perthame: SIAM J. Numer. Anal. 35, 2223 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J.W. Shen, X. Zhong: Semi-implicit Runge-Kutta schemes for non-autonomous differential equations in reactive flow computations. AIAA Paper No. 96-1969 (1996)Google Scholar
  17. 17.
    Trotsyuk A.V., Kudryavtsev A.N., Ivanov M.S.: ‘Numerical Simulation of Reflection of Detonation and Shock Waves in Supersonic Flows’. In: Confined Detonations and Pulsed Detonation Engines, International Colloquium on Advances in Confined Detonations at Moscow, Russia, July 2–5, 2002, ed. by G. Roy, S. Frolov, R. Santoro, S. Tsyganov (Torus Press, Moscow 2003) pp. 73–86Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. V. Trotsyuk
    • 1
  • A. N. Kudryavtsev
    • 1
  • M. S. Ivanov
    • 1
  1. 1.Institute of Theoretical and Applied Mechanics SB RASNovosibirskRussia

Personalised recommendations