Advertisement

Shock Waves pp 359-364 | Cite as

Application of the FM spectroscopic technique to SiH2 detection in a shock tube

  • M. W. Crofton
  • E. L. Petersen
Conference paper

Abstract

Frequency modulation (FM) spectroscopy using a tunable ring-dye laser has been demonstrated on the SiH2 reaction intermediate in a shock tube. In the present application of FM spectroscopy, the modulation frequency is higher than normally employed, allowing one sideband to be well off the peak despite the broad lineshape of the rQo,4(4) line in the \( \tilde A - \tilde X \) (0,2,0)–(0,0,0) band. In addition to increasing sensitivity, the FM approach has eliminated signal contributions from particle formation that previously could dominate the long-time pro- file. Silylene absorption traces were obtained from SiHU mixtures highly diluted in argon and reflected-shock heated to temperatures between 1070 and 1610 K. Minimum detection sensitivities well below 0.05% absorption were demonstrated, corresponding to < 0.1 ppm SiH2.

Keywords

Frequency Modulation Shock Tube Soot Formation Laser Absorption Reflect Shock Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.J. Dean, R.K. Hanson: J. Quant. Spectros. Rad. Trans. 42, 375 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    G.E. Hall, S.W. North: Ann. Rev. Phys. Chem. 51, 243 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    G.C. Bjorklund: Optics Lett. 5, 15 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    M. Votsmeier, S. Song, D.F. Davidson, R.K. Hanson: Int. J. Chem. Kinet. 31, 445 (1999)CrossRefGoogle Scholar
  5. 5.
    M. Votsmeier, S. Song, R.K. Hanson, C.T. Bowman: J. Phys. Chem. A 103, 1566 (1999)CrossRefGoogle Scholar
  6. 6.
    J. Deppe, G. Friedrichs, A. Ibrahim, H.-J. Römming, H.Gg. Wagner: Ber. Bunsenges. Phys. Chem. 102, 1474 (1998)CrossRefGoogle Scholar
  7. 7.
    J. Deppe, G. Friedrichs, H.-J. Römming, H.Gg. Wagner: Phys. Chem. Chem. Phys. 1, 427 (1999)Google Scholar
  8. 8.
    G.E. Hall, M. Wu: J. Phys. Chem. 97, 109 (1993)Google Scholar
  9. 9.
    J.C. Bloch, R.W. Field, G.E. Hall, T.J. Sears: J. Chem. Phys. 101, 1717 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    J.M. Sasinski, E.A. Whittaker, G.C. Bjorklund, R.W. Dreyfus, R.D. Estes, R.D., R.E. Walkup: Appl. Phys. Lett. 44, 1155 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    E.L. Petersen, M.J.A. Rickard, M.W. Crofton, E.D. Abbey, M. Traum, D.M. Kalitan: Meas. Sei. Tech., submitted (2004)Google Scholar
  12. 12.
    R.J. Kee, F.M. Rupley, J.A. Miller: SAND87-8215B, Sandia National Lab. (1990)Google Scholar
  13. 13.
    G.C. Bjorklund, M.D. Levenson, W. Lenth, C. Ortiz: Appl. Phys. B 32, 145 (1983)ADSCrossRefGoogle Scholar
  14. 14.
    M.W. Markus, P. Roth: J. Quant. Spectros. Rad. Trans. 52, 783 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    E.L. Petersen, M.W. Crofton: J. Phys. Chem. A 107, 10988 (2003)CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. W. Crofton
    • 1
  • E. L. Petersen
    • 2
  1. 1.Space Materials LaboratoryThe Aerospace CorporationEl SegundoUSA
  2. 2.Mechanical EngineeringUniversity of Central FloridaOrlandoUSA

Personalised recommendations