Advertisement

Shock Waves pp 269-274 | Cite as

Measurement of electron density profile behind strong shock waves with a Langmuir probe

  • S. Wang
  • J. P. Cui
  • B. C. Fan
  • Y. Z. He
  • R. L. Zhang
  • L. H. Han
  • F. M. Yu
  • J. L. Le
Conference paper

Abstract

At the shock velocity range of 7∼9km/s, the variations of electron density behind strong shock waves are measured in a low-density shock tube by using the Langmuir electrostatic probe technique. The electron temperature, calculated based on Park’s three-temperature model, is used in interpreting the probe current data. The peak electron densities determined in the present experiment are shown to be approximately half lower than those predicted by Lin’s calculation. The experimentally obtained ratios of the characteristic ionization distance to the mean free path of freestream ahead of the shock wave are found to be in a good agreement with the existing experiments and Park’s calculation.

Keywords

Shock Wave Shock Tube Electron Number Density Langmuir Probe Shock Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.A. Sonin: Free-molecule langmuir probe and its use in flowfield studies. J. AIAA 4(9), 1588 (1966)ADSCrossRefGoogle Scholar
  2. 2.
    G.J. Schulz, S.C. Brown: Microwave study of positive ion collection by probes. Physical Review 98, 1964 (1955)CrossRefGoogle Scholar
  3. 3.
    C. Park: On convergence of computation of chemically reacting flows. AIAA Paper 85-0247 (1985)Google Scholar
  4. 4.
    H.Y. Zhao, R.L. Zhang, J.L. Le: In: Proceedings of the 10th Chinese Symposium on Shock Waves, Huangshan, China, Otc. 20–24, 2002 Google Scholar
  5. 5.
    S.C. Lin, R.A. Neal, W.I. Fyfe: Rate of ionization behind shock waves in air. I. experiment results. Physics of Fluids 5(12), 1633 (1962)ADSCrossRefGoogle Scholar
  6. 6.
    S.C. Lin, J.D. Teare: Rate of ionization behind shock waves in air. II. Theoretical interpretation. Physics of Fluids 6(3), 355 (1963)ADSCrossRefGoogle Scholar
  7. 7.
    J.F. Wilson: Ionization rate of air behind high-speed shock waves. Physics of Fluids 9(10), 1913 (1966)ADSCrossRefGoogle Scholar
  8. 8.
    C. Park: Review of chemical-kinetic problems of future NASA missions, I: Earth entries. J. Thermophysics and Heat Transfer 7(3), 385 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    A. Frohn, P.C.T. De Boer: Measurement of ionization relaxation times in shock tubes. Physics of Fluid Supplement I, I-54–I-57 (1969)Google Scholar
  10. 10.
    Y. Manheimer-Timnat, W. Low: Electron density and ionization rate in thermally ionized gases produced by medium strength shock waves. J. Fluid Mechanics 6, 449 (1959)ADSCrossRefGoogle Scholar
  11. 11.
    B. Niblett, V.H. Blackman: An approximate measurement of the ionization time behind shock waves in air. J. Fluid Mechanics 4, 191 (1958)ADSCrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • S. Wang
    • 1
  • J. P. Cui
    • 1
  • B. C. Fan
    • 1
  • Y. Z. He
    • 1
  • R. L. Zhang
    • 2
  • L. H. Han
    • 2
  • F. M. Yu
    • 2
  • J. L. Le
    • 2
  1. 1.Laboratory of High Temperature Gas Dynamics, Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.China Aerodynamic Research and Development CenterMianyang, SichuanChina

Personalised recommendations