Advertisement

Shock Waves pp 1199-1204 | Cite as

Molecular dynamics studies of shock wave propagation in argon by using higher order symplectic integrators

  • Y. Kohno
  • T. Yashima
  • O. Takahashi
  • K. Saito
  • T. Saito
  • K. Takayama
Conference paper

Abstract.

The generation and propagation of shock waves in liquid Ar are investigated using the molecular dynamics method by means of higher order symplectic integrators (H. Yoshida, 1990, [12]). The symplectic integrator is the numerical integration scheme for Hamiltonian systems. The algorithm is accurate and has no accumulation of numerical errors for total energy. In order to test the effect of higher order symplectic integrators on molecular dynamics, we have calculated NVE ensemble in liquid argon. The results obtained by using the two integrators (Verlet and sixth symplectic methods) are compared. It is clearly shown that the total energy decreases considerably by using Verlet method, while it is fairly well conserved the total energy with the symplectic method. Furthermore, we have calculated the generation and the propagation of plane shock wave in liquid Ar. It has been found that the profiles of shock wave front using higher order symplectic integrators steeper and narrower compared to the Verlet method.

Keywords

Shock Wave Physical Review Extracorporeal Shock Wave Lithotripsy Shock Wave Front Argon Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ueda: Computer Simulation. (Asakura Press, Tokyo 1990) (in Japanese)Google Scholar
  2. 2.
    B.L. Holian, W.G. Hoover, B. Moran, G.K. Straub: Physical Review A 22, 2798 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    D.H. Tsai, S.F. Trevino: Physical Review A 24(5), 2743 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    B.L. Holian, C.W. Patterson, M. Mareschal, E. Salomons: Physical Review E 47(1), 24 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    M. Koshi, H. Matsui, T. Saito, K. Takayama: ‘A Theoretical Study for Gas-gas Separation in High Temperature and High Pressure Fluid’. In: Proc 10th Int. Detonation Symp, July 12–16, Boston, Massachusetts, USA, 1993, pp. 441–448Google Scholar
  6. 6.
    M. Koshi, T. Saito, H. Nagoya, H. Matsui, K. Takayama: Kayaku Gakkaishi 55(6), 229 (1994) (in Japanese)Google Scholar
  7. 7.
    T. Yashima, T. Saito, K. Takayama: ‘Molecular Dynamic Simulations of Shock Wave Propagation in Liquids and Gases’. In: Proc ISSW23, Texas, USA, 2001, pp. 978–984Google Scholar
  8. 8.
    T. Kikuchi, M. Koshi: Kayaku Gakkaishi 63(3), 94 (2002) (in Japanese)Google Scholar
  9. 9.
    W.G. Hoover: Physical Review Letters 42(23), 1531 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    B.L. Holian: Physical Review A 37(7), 2562 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    B.L. Holian: Shock Waves 5, 149 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    H. Yoshida: Physics Letters A 150(5,6,7), 262 (1990)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    F.H. Ree: J. Chem. Phys. 78, 409 (1983)ADSCrossRefGoogle Scholar
  14. 14.
    L. Verlet: Physical Review 156(1), 98 (1967)ADSCrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Y. Kohno
    • 1
  • T. Yashima
    • 2
  • O. Takahashi
    • 2
  • K. Saito
    • 2
  • T. Saito
    • 1
  • K. Takayama
    • 1
  1. 1.Shock Wave Research Center, Institute of Fluid ScienceTohoku UniversitySendaiJapan
  2. 2.Department of Chemistry, Graduate school of ScienceHiroshima UniversityHigashi-hiroshimaJapan

Personalised recommendations