Shock Waves pp 1097-1103 | Cite as

Impact behavior of two-dimensional particulate aggregation containing dissimilar material layer

  • M. Nishida
  • K. Tanaka
  • A. Ito
  • Z. Lu
Conference paper


The dynamic response of two-dimensional particulate aggregation with a dissimilar material layer subjected to the impact of a spherical projectile is investigated experimentally and also numerically using discrete element method. One layer of the two-dimensional particulate aggregation composed of nylon-66 spheres of 1/4 inch-diameter is replaced with alumina ceramics (Al2O3) spheres of same diameter. It is found from the distribution of normal contact force between spheres that the reflection of normal contact forces from the dissimilar material layer affects the scattering behavior of the particulate aggregation.


Discrete Element Method Particulate Aggregation Dissimilar Material Normal Contact Force Impact Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Thornton, K.K. Yin, M.J. Adams: J. Phys. D Appl. Phys. 29, 424 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    H. Sakakita, A.K. Hayashi, A.I. Ivandaev: ‘Numerical Simulation of Shock Wave Interaction with Powder Layers’. In: Proc. 18th Int. Symp. Shock Waves at Sendai, Japan, July 21–26, 1991, ed. by K. Takayama (Springer, Heidelberg 1992) pp. 563–568Google Scholar
  3. 3.
    A. Britan, A. Ben-Dor, T. Elperin, O. Igra, J.P. Jiang: Exp. Fluids 22, 507 (1997)CrossRefGoogle Scholar
  4. 4.
    A. Levy: Powder Technol. 103, 212 (1999)CrossRefGoogle Scholar
  5. 5.
    F. Rioual, A. Valance, D. Bideau: Phys. Rev. E 62(2), 2450 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    P.A. Cundall: ‘A Computer Model for Simulation Progressive, Large-scale Movements in Block Rock Systems’. In: Symp. Int. Soc. Rock Mech. at Nancy, France, Oct. 4–6, 1971 II–8Google Scholar
  7. 7.
    A. Huang, MY. Ma: Can. Geotech. J. 31, 91 (1994)CrossRefGoogle Scholar
  8. 8.
    M. Herten, M. Pulsfor: Granular Matter 2, 1 (1999)CrossRefGoogle Scholar
  9. 9.
    M. Horio, S. Kajikawa: ‘DEM Simulation of Industrial Issues in Fluidized Bed Reactors’. In: Handbook of conveying and handling of particulate solids, ed. by A. Levy, H. Kaiman (Elsevier 2001) pp. 547–559Google Scholar
  10. 10.
    M. Nishida, K. Tanaka, T. Takagi: ‘Numerical Simulation on Dynamic Behavior of Granular Materials Subjected to Projectile Impact by Using Discrete Element Method’. In: Proc. 23nd Int. Symp. Shock Waves at Texas, USA, July 22–27, 2001, ed. by F.K. Lu (2001) pp. 655–661Google Scholar
  11. 11.
    K. Tanaka, M. Nishida, T. Kumimochi, T. Takagi: Powder Technol. 124, 160 (2002)CrossRefGoogle Scholar
  12. 12.
    K.L. Johnson: Contact mechanics, (Cambridge University Press, Cambridge 1985)CrossRefGoogle Scholar
  13. 13.
    R.D. Midnlin, H. Deresiewicz: J. Appl. Mech. Trans. ASME 20, 327 (1953)Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. Nishida
    • 1
  • K. Tanaka
    • 1
  • A. Ito
    • 2
  • Z. Lu
    • 2
  1. 1.Department of Mechanical EngineeringNagoya Institute of TechnologyNagoyaJapan
  2. 2.Graduate Student, Graduate School of EngineeringNagoya Institute of TechnologyJapan

Personalised recommendations