Advertisement

Shock Waves pp 1073-1078 | Cite as

Study on the effect of Mach number and initial amplitudes on the evolution of a single-mode shock-induced hydro-dynamic instability

  • O. Sadot
  • A. Rikanati
  • D. Oron
  • G. Ben-Dor
  • D. Shvarts
Conference paper

Abstract

In the present study the Mach number and the high-initial amplitudes effects on the evolution of the single-mode shock wave induced instability were investigated. To distinguish between the above-mentioned effects, two sets of shock-tube experiments were conducted: high-initial amplitudes with a low-Mach incident shock; and small amplitude initial conditions with moderate-Mach incident shock. In the high-amplitude experiments a reduction of the initial velocity with respect to the linear prediction was measured. The results were compared to those predicted by a vorticity deposition model and to previous experiments with moderate and high Mach numbers done by others and good agreement was found. The result suggested that the high-initial amplitude effect is the dominant one rather then the high-Mach number effect as suggested by others. In the small amplitude-moderate Mach numbers experiments a reduction from the impulsive theory was noted at late stages.

Keywords

Mach Number Incident Shock Initial Amplitude Schlieren Photograph Atwood Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.N. Aleshin, E.V. Lazareva, E.I. chebotareva, S.V. Sergeev and S.G. Zaytsev: In: Proc. 6th Int. Workshop on Compressible Turbulent Mixing, Marseille, France, 1, 1997 Google Scholar
  2. 2.
    A.N. Aleshin, E.V. Lazareva, S.G. Zaitsev, V.B. Rozanov, E,G. Gamali and I.G. Lebo: Sov. Phys. Dokl. 35, 159 (1990)ADSGoogle Scholar
  3. 3.
    U. Alon, J. Hecht, D. Ofer and D. Shvarts: Phys. Rev. Lett. 74, 534 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    G. Dimonte, CE. Frerking, M. Schneider and B. Remington: Phys. Plasmas 3, 614 (1996)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Erez, O. Sadot, A.L. Levin, D. Shvarts and G. Ben-Dor: Shock Waves J. 10(4), 241 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    J. Hecht, U. Alon and D. Shvarts: Phys. Fluids 6, 4019 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    R.L. Holmes, G. Dimonte, B. Fryxell, M.L. gittings, J.W. Grove, M. Schneider, D.H. Sharp, A.L. Velikovich, R.P. Weaver and Q. Zhang: J. Fluid Mech. 389, 55 (1999)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    E.E. Meshkov: Fluid Dyn. 4, 101 (1969)ADSCrossRefGoogle Scholar
  9. 9.
    K.M. Meyer and P.J. Blewett: Phys. Fluids 15, 753 (1972)ADSCrossRefGoogle Scholar
  10. 10.
    R.D. Richtmyer: Comm. Pure Appl. Math. 13, 297 (1960)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Rikanati, U. Alon, and D. Shvarts: Phys. Rev. E. 58( 6), 7410 (1998)Google Scholar
  12. 12.
    A. Rikanati, O. Sadot, D. Oron and D. Shvarts: Phys Rev. E. 67, (2003)Google Scholar
  13. 13.
    O. Sadot, L. Erez, U. Alon, D. Oron, A.L. Levin, G. Erez, G. Ben-Dor and D. shvarts: Phys. Rev. Lett. 80, 1654 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    R. Samtaney and N.J. Zabusky: J. Fluid Mech. 269, 45 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    Q. Zhang, and S.-I. Sohn: Appl. Maths. Lett. 10, 121 (1997)CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • O. Sadot
    • 1
    • 2
  • A. Rikanati
    • 1
    • 3
  • D. Oron
    • 1
    • 4
  • G. Ben-Dor
    • 2
  • D. Shvarts
    • 1
    • 2
    • 3
  1. 1.Dept. of PhysicsNuclear Research Center NegevIsrael
  2. 2.Dept. of Mechanical EngineeringBen Gurion University of the NegevBeer-ShevaIsrael
  3. 3.Dept. of PhysicsBen Gurion University of the NegevBeer-ShevaIsrael
  4. 4.Dept. of Physics of Complex SystemsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations