Shock Waves pp 1019-1024 | Cite as

Reflection of blast waves from straight surfaces

  • H. Kleine
  • E. Timofeev
  • K. Takayama
Conference paper


This paper presents the results of an ongoing experimental and numerical investigation into the unsteady process of blast wave reflection from straight smooth surfaces. Basic blast wave phenomena such as the transition from regular to irregular wave reflection can be adequately and conveniently studied in a laboratory environment by using small charges with masses in the milligram range. Previous work [1] has already revealed considerable discrepancies between numerical and experimental results for the location xtr of the transition from regular to irregular wave reflection. Further experiments with improved diagnostics confirm that the experimental determination of the transition point is rather difficult and possibly inaccurate because of the initially minuscule size and gradual growth of the Mach stem.


Blast Wave Mach Stem Silver Azide Schlieren Visualization Irregular Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kleine, E. Timofeev, K. Takayama: ‘Blast Wave Reflection from Solid, Liquid, and Gaseous Surfaces’. In: Proc. 23rd ISSW, ed. by F. Lu, paper 1903, CD-ROM proceedings 1024 H. Kleine et al. (2002)Google Scholar
  2. 2.
    W.F. Baker: Explosions in Air. (Texas University Press, Austin 1973)Google Scholar
  3. 3.
    G.F. Kinney, K.J. Graham: Explosive Shocks in Air. (Springer, New York 1985)CrossRefGoogle Scholar
  4. 4.
    J.M. Dewey: ‘Expanding Spherical Shocks (Blast Waves)’ In: Handbook of Shock Waves, Vol. 2, ed. by G. Ben-Dor, O. Igra, T. Elperin, (Academic Press, San Diego 2001), pp. 441–481CrossRefGoogle Scholar
  5. 5.
    G. Ben-Dor: Shock Wave Reflection Phenomena. (Springer, New York 1991)zbMATHGoogle Scholar
  6. 6.
    H. Kleine, J.M. Dewey, K. Ohashi, T. Mizukaki, K. Takayama: Shock Waves 13(2), 123 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    H. Kleine, K. Takayama: ‘Visualization of Laboratory-Scale Blast Wave Phenomena’. In: Proc. 10th Int. Symp. Flow Visualization, paper F0149, CD-ROM proceedings (2002)Google Scholar
  8. 8.
    H. Kleine, K. Takayama: ‘Laboratory-scale Blast Wave Phenomena’ In: Proc. Int. Symp. Interdisciplinary Shock Wave Research, ed. by B. Milton, T. Saito, M. Sun, (Tohoku University 2004), pp. 257–276Google Scholar
  9. 9.
    T.C.J. Hu, I.I. Glass: AIAA J. 24, 607 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    E.V. Timofeev, B.W. Skews, P.A. Voinovich, K. Takayama: ‘The Influence of Unsteadiness and Three-dimensionality on Regular-to-Mach Reflection Transitions.’ In: Proc. ISSW 22, vol. 2, ed. by G.J. Ball, R. Hillier, G.T. Roberts, (Imperial College Press, London 1999), pp. 1231–1236Google Scholar
  11. 11.
    J.M. Dewey, D.J. McMillin, D.F. Classen: J. Fluid Mech. 81, 701 (1977)ADSCrossRefGoogle Scholar
  12. 12.
    T.G. Etoh, K. Takehara, T. Okinaka, Y. Takano, A. Ruckeishausen, D. Poggemann: ‘Development of High-Speed Video Cameras’. In: Proc. 24thInt. Congr. High Speed Photography and Photonics ed. by K. Takayama, T. Saito, H. Kleine, E. Timofeev, (SPIE, Bellingham, Vol. 4183, 2001), pp. 36–47Google Scholar
  13. 13.
    P. Voinovich: 2-D Locally adaptive unstructured Euler Code. Advanced Technology Center, St. Petersburg, Russia (1993)Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • H. Kleine
    • 1
  • E. Timofeev
    • 2
  • K. Takayama
    • 3
  1. 1.School of Aerospace, Civil and Mechanical EngineeringUniversity of New South Wales, Australian Defence Force AcademyCanberraAustralia
  2. 2.Department of Mechanical EngineeringMcGill UniversityMontrealCanada
  3. 3.Shock Wave Research Center, Institute of Fluid ScienceTohoku UniversitySendaiJapan

Personalised recommendations