Advertisement

Shock Waves pp 701-706 | Cite as

Experimental study of a shock accelerated water layer with imaging and velocity measurement

  • P. Meekunnasombat
  • J. G. Oakley
  • M. H. Anderson
  • R. Bonazza
Conference paper

Abstract

A shock tube investigation of a shocked water layer is undertaken to study the mitigating effects that a liquid sheet may provide for the protection of cooling tubes in an inertial fusion energy reactor chamber. The shock wave blast from the fusion microexplosion will cause the protecting liquid layer to break apart and the liquid droplets will then be suspended throughout the chamber. Some reactor designs require clearing the chamber (approximately 115 m3) between reactions, and therefore, the understanding of how a shock-accelerated liquid layer breaks up could be a critical consideration in the design. A large vertical shock tube is used to conduct shock-accelerated liquid layer experiments to model this scenario. A planar shock wave contacts, and then accelerates, a water layer down the shock tube where it is imaged in the test section using shadowgraphy and laser sheet techniques. Quantitative data of the water layer velocity inside the shock tube is measured using an array of photodiodes. It is found that the measured velocity of the leading edge of the shocked water layer is nearly constant, and this velocity is slightly less than the particle velocity behind the incident shock.

Keywords

Shock Wave Test Section Water Layer Shock Tube Laser Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.W. Moir, R.L. Bieri et al.: Fusion Technology 25, 5 (1994)CrossRefGoogle Scholar
  2. 2.
    H. Moriyama: J. of Nuclear Materials 148, 211 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    T. Terai, A. Suzuki, S. Tanaka: Fusion Technology 39(2,2), 768 (2001)CrossRefGoogle Scholar
  4. 4.
    L.C. Elwell, D.L. Sadawski, M. Yoda, S.I. Abdel-Khalik: Fusion Technology 39(2,2), 716 (2001)CrossRefGoogle Scholar
  5. 5.
    R. Abbott, S. Pemberton, P.F. Peterson, G.P Sun, P. Wright, R. Holmes, J. Latkowski, R. Moir, K. Springer: Fusion Technology 39(2,2), 732 (2001)CrossRefGoogle Scholar
  6. 6.
    S.J. Pemberton: Thick Liquid Protection in Inertial Fusion Power Plants. PhD thesis, University of California-Berkeley, California (2002)Google Scholar
  7. 7.
    W.K. Chong, K.Y. Lam, K.S. Yeo, G.R. Liu, O.Y. Chong: J. of Shock and Vibration 6, 73 (1999)CrossRefGoogle Scholar
  8. 8.
    H.Z. Zhao, K.Y. Lam, O.Y. Chong: J. of Shock and Vibration 8, 349 (2001)CrossRefGoogle Scholar
  9. 9.
    C. Jantzen, P.F. Peterson: Nuclear Instrument & Methods in Physics Research A, 464, 404 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    P. Meekunnasombat, J.G. Oakley, M.H. Anderson, R. Bonazza: ‘Experimental Investigation of a Shock-accelerated Liquid Layer with Imaging and Pressure Measurement’. In: The 15th Topical Meeting on the Technology of Fusion Energy, Washington DC, 2002 Google Scholar
  11. 11.
    M.H. Anderson, B.P. Puranik, J.G. Oakley, P.W. Brooks, R. Bonazza: Shock Waves 10(5), 377 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    J.G. Oakley: Experimental Study of Shocked Gas Interfaces with Visualized Initial Conditions. PhD thesis, University of Wisconsin-Madison, Wisconsin (2001)Google Scholar
  13. 13.
    J.G. Oakley, B.P. Puranik, M.H. Anderson, R. Bonazza: ‘An Investigation of Shock-induced Interfacial Instabilities for Strong Incident Shocks’. In: Int. Cong, of Theo. Appl. Mech, Chicago, Illinois 2000 Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • P. Meekunnasombat
    • 1
  • J. G. Oakley
    • 1
  • M. H. Anderson
    • 1
  • R. Bonazza
    • 1
  1. 1.Department of Engineering PhysicsUniversity of WisconsinMadisonUSA

Personalised recommendations