Automatic Generation of Classification Theorems for Finite Algebras

  • Simon Colton
  • Andreas Meier
  • Volker Sorge
  • Roy McCasland
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3097)


Classifying finite algebraic structures has been a major motivation behind much research in pure mathematics. Automated techniques have aided in this process, but this has largely been at a quantitative level. In contrast, we present a qualitative approach which produces verified theorems, which classify algebras of a particular type and size into isomorphism classes. We describe both a semi-automated and a fully automated bootstrapping approach to building and verifying classification theorems. In the latter case, we have implemented a procedure which takes the axioms of the algebra and produces a decision tree embedding a fully verified classification theorem. This has been achieved by the integration (and improvement) of a number of automated reasoning techniques: we use the Mace model generator, the HR and C4.5 machine learning systems, the Spass theorem prover, and the Gap computer algebra system to reduce the complexity of the problems given to Spass. We demonstrate the power of this approach by classifying loops, groups, monoids and quasigroups of various sizes.


Decision Tree Algebraic Structure Isomorphism Class Automatic Generation Pure Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colton, S.: Automated Theory Formation in Pure Mathematics. Springer, Heidelberg (2002)Google Scholar
  2. 2.
    Colton, S.: The HR program for theorem generation. In: Voronkov [15]Google Scholar
  3. 3.
    The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.3 (2002),
  4. 4.
    Humphreys, J.: A Course in Group Theory. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
  5. 5.
    Kunen, K.: Single Axioms for Groups. J. of Autom. Reasoning 9(3), 291–308 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kronecker, L.: Auseinandersetzung einiger Eigenschaften der Klassenanzahl idealer komplexer Zahlen. Monatsbericht der Berliner Akademie, pp. 881–889 (1870)Google Scholar
  7. 7.
    McCasland, R., Moore, M., Smith, P.: An introduction to Zariski spaces over Zariski topologies. Rocky Mountain Journal of Mathematics 28, 1357–1369 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    McCune, W.: Single axioms for groups and Abelian groups with various operations. J. of Autom. Reasoning 10(1), 1–13 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    McCune, W.: Mace4 Reference Manual and Guide. Argonne National Laboratory, ANL/MCS-TM-264 (2003)Google Scholar
  10. 10.
    McKay, B., Meinert, A., Myrvold, W.: Counting small latin squares. In: European Women in Mathematics Int. Workshop on Groups and Graphs, pp. 67–72 (2002)Google Scholar
  11. 11.
    Meier, A., Sorge, V., Colton, S.: Employing theory formation to guide proof planning. In: Calmet, J., Benhamou, B., Caprotti, O., Hénocque, L., Sorge, V. (eds.) AISC 2002 and Calculemus 2002. LNCS (LNAI), vol. 2385, pp. 275–289. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  13. 13.
    Schwenk, J.: A classification of abelian quasigroups. Rendiconti di Matematica, Serie VII 15, 161–172 (1995)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Slaney, J., Fujita, M., Stickel, M.: Automated reasoning and exhaustive search: Quasigroup existence problems. Comp. & Math. with Applications 29, 115–132 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Voronkov, A. (ed.): CADE 2002. LNCS (LNAI), vol. 2392. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  16. 16.
    Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.: SPASS version 2.0. In: Voronkov [15], pp. 275–279Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Simon Colton
    • 1
  • Andreas Meier
    • 2
  • Volker Sorge
    • 3
  • Roy McCasland
    • 4
  1. 1.Department of ComputingImperial CollegeLondonUK
  2. 2.DFKI GmbHSaarbrückenGermany
  3. 3.School of Computer ScienceUniversity of BirminghamUK
  4. 4.School of InformaticsUniversity of EdinburghUK

Personalised recommendations