Chain Resolution for the Semantic Web

  • Tanel Tammet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3097)


We investigate the applicability of classical resolution-based theorem proving methods for the Semantic Web. We consider several well-known search strategies, propose a general schema for applying resolution provers and propose a new search strategy ”chain resolution” tailored for large ontologies. Chain resolution is an extension of the standard resolution algorithm. The main idea of the extension is to treat binary clauses of the general form A(x) ∨ B(x) with a special chain resolution mechanism, which is different from standard resolution used otherwise. Chain resolution significantly reduces the size of the search space for problems containing a large number of simple implications, typically arising from taxonomies. Finally we present a compilation-based schema for practical application of resolution-based methods as inference engines for Semantic Web queries.


Description Logic Predicate Symbol Search State Propositional Variation Unit Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Casc]
  2. [Fermüller93]
    Fermüller, C., Leitsch, A., Tammet, T., Zamov, N.: Resolution Methods for the Decision Problem. LNCS, vol. 679. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  3. [Handbook01]
    Robinson, A.J., Voronkov, A. (eds.): Handbook of Automated Reasoning. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  4. [Handbook03]
    Baader, F., Calvanese, V., McGuinness, V., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  5. [HustadtSchmidt00]
    Hustadt, U., Schmidt, R.A.: Issues of decidability for description logics in the framework of resolution. In: Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS (LNAI), vol. 1761, pp. 192–206. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. [OWL]
    Patel-Schneider, P.F., Hayes, P., Horrocks, I. (eds.): OWLWeb Ontology Language. Semantics and Abstract Syntax. W3C Working Draft, March 31. W3C (2003),
  7. [RDF]
    Hayes, P. (ed.): RDF Semantics. W3C Working Draft, January 23. W3C (2003),
  8. [SemanticWeb01]
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May 2001)Google Scholar
  9. [SemanticWebURL]
    Semantic web. W3C,
  10. [TPTP]
  11. [Tammet97]
    Tammet, T.G.: Journal of Automated Reasoning 18(2), 199–204 (1997)CrossRefGoogle Scholar
  12. [Tammet98]
    Tammet, T.: Towards Efficient Subsumption. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 427–441. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. [Tammet02]
    Tammet, T.G.: Tallinn Technical University,

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Tanel Tammet
    • 1
  1. 1.Tallinn Technical University 

Personalised recommendations