Advertisement

Towards Reusing Model Components in Systems Biology

  • Adelinde M. Uhrmacher
  • Daniela Degenring
  • Jens Lemcke
  • Mario Krahmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3082)

Abstract

For reusing model components, it is crucial to understand what information is needed and how it should be presented. The centrality of abstraction being inherent in the modelling process distinguishes model components from software components and makes their reuse even more difficult. Objectives and assumptions which are often difficult to explicitate become an important aspect in describing model components. Following the argumentation line of the Web Service ontology OWL-S, we propose a set of metadata which is structured into profile, process model, and grounding to describe model components. On the basis of the specific model component Tryptophan Synthase, its metadata is refined in XML. The reuse of the described model component is illustrated by integrating it into a model of the Tryptophan operon.

Keywords

System Biology Model Component Simulation System Resource Description Framework Software Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Anderson, K.S., Kim, A.Y., Quillen, J.M., Sayers, E., Yand, X.J., Miles, E.W.: Kinetic characterization of channel impaired mutants of tryptophan synthase. The Journal of Biological Chemistry 270(50), 29936–29944 (1995)CrossRefGoogle Scholar
  5. 5.
    Aronson, J., Bose, P.: A model-based approach to simulation composition. In: Proceeding of the Fifth Symposium on Software Reusability, pp. 73–82 (1999)Google Scholar
  6. 6.
    Barros, F., Sarjoughian, H. (eds.): Special Issue on Component-Based Modelling and Simulation. Simulation – Transactions of the SCS Simulation. Sage, Thousand Oaks (2004)Google Scholar
  7. 7.
    Biermann, S., Uhrmacher, A.M., Schumann, H.: Supporting multi-level models in systems biology by visual methods. In: Proceedings of European Multi-Simulation Conference (2004) (page submitted)Google Scholar
  8. 8.
    Buss, A., Jackson, L.: A comparison of hla, corba, and rmi. In: Proceedings of the 1998 Winter Simulation Confrence, pp. 819–825 (1998)Google Scholar
  9. 9.
    Cellier, F.E.: Continuous System Modeling. Springer, New York (1992)zbMATHGoogle Scholar
  10. 10.
    Chen, G., Szymanski, B.K.: Object-oriented paradigm: component-oriented simulation architecture: toward interoperability and interchangeability. In: Proceedings of the 2001 Winter Simulation Conference, pp. 495–501 (2001)Google Scholar
  11. 11.
    Chen, G., Szymanski, B.K.: Cost: A component-oriented discrete ecent simulator. In: Proceedings of the 2002 Witer Simulation Conference, pp. 776–782 (2002)Google Scholar
  12. 12.
    Cuellar, A.A., Lloyed, C.M., Nielsen, P.F., Bullivant, D.P., Nickerson, D.P., Hunter, P.J.: An overview of of cellml 1.1, a biological model description language. Simultation – Transaction of the SCS 79(12), 740–747 (2003)Google Scholar
  13. 13.
    Dahmann, J., Fujjimoto, R., Weatherly, R.: The dod high level architecture: An update. In: Proceddings of the 1998 Winter Simulation Conference, pp. 797–804 (1998)Google Scholar
  14. 14.
    Davis, P.K., Bigelow, J.H., McEver, J.: Exploratory analysis and a case history of multi-resolution, multiperspective modeling. Technical Report RP-925, RAND (2000)Google Scholar
  15. 15.
    de Lara, J., Vangheluwe, H.: AToM3: A tool for multi-formalism and meta-modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002, vol. 2306, pp. 174–188. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Degenring, D., Röhl, M., Uhrmacher, A.M.: Discrete event simulation for a better understanding of metabolite channeling - A system theoretic approach. In: CMSB 2003. LNCS, vol. 2602, pp. 114–126. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Fishwick, P.A.: Using xml for simulation modeling. In: Proceedings of the 2002 Winter Simulation Conference (2002)Google Scholar
  18. 18.
    Gillespie, D.T.: Ageneral method for numerically simulation the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434 (1976)CrossRefGoogle Scholar
  19. 19.
    Heisel, M., Luethi, J., Uhrmacher, A.M., Valentin, E.: A description structure for simulation model components. In: Proceedings of the Summer Simulation Confrernce (2004) (page submitted)Google Scholar
  20. 20.
    Hnich, B., Jonsson, T., Kiziltan, Z.: On the definition of concepts in component based software development. Technical report, University Department of Information Science, Uppsala, Sweden (2000)Google Scholar
  21. 21.
    Kam, N., Harel, D., Kugler, H., Marelly, R., Pnueli, A., Hubbard, E.J., Stern, M.J.: Formal modeling of c.elegans development: A scenario based approach. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 4–20. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Kitano, H.: A graphical notation for biochemical networks. Biosilico 1(5), 169–176 (2003)CrossRefGoogle Scholar
  23. 23.
    Klettke, M., Meyer, H.: XML & Datenbanken – Konzepte, Sprachen und Systeme. DPunkt Verlag (2003)Google Scholar
  24. 24.
    Mackulak, G., Lawrence, F.: Effective simulation model reuse; a case study for amhs modeling. In: Proceedings of the 1998 Winter Simulation Conference, pp. 979–984 (1998)Google Scholar
  25. 25.
    Marhl, M.: Transaction from stochastic to deterministic behaviour in dependence on the divergence of systems. In: 3rd Workshop on Comutation of Beiochemical Pathways and Genetic Networks, pp. 49–58. Logos Verlag (2003)Google Scholar
  26. 26.
    Miller, Y., Ge, J.A., Tao, J.: Component –based simulation environments: Jsim as a case study using java beans. In: Proceedings of the 1998 Winter Simulation Conference, pp. 373–381 (1998)Google Scholar
  27. 27.
    Minsky, M.: Models, Minds, Machines. In: Proc. IFIP Congress, pp. 45–49 (1965)Google Scholar
  28. 28.
    Nagasaki, M., Doi, A., Matsuno, H., Miyano, S.: Genomic object net: a platform for modeling and simulating biopathways. Applied Bioinformatics (2003)Google Scholar
  29. 29.
    Overstreet, C.M., Nance, R.M., Balci, O.: Issue in enhancing model reuse. In: First International Conference on Grand Challenges for Modeling and Simulation (2002)Google Scholar
  30. 30.
    Page, E., Opper, J.: Observations on the complexity of composable simulation. In: Proceddings of the 1999 Winter Simulation Conference, Pages, pp. 553–560 (1999)Google Scholar
  31. 31.
    Santill’an, M., Mackey, M.C.: Dynamic regulation of the tryptophan operon: A modeling study and comparison with experimental data. In: Proceeding of the National Academy of Science of the USA, vol. 98(4), pp. 1364–1369 (2001)Google Scholar
  32. 32.
    Uhrmacher, A.M., Tyschler, P., Tyschler, D.: Modeling Mobile Agents. Future Generation Compter System 17, 107–118 (2000)CrossRefGoogle Scholar
  33. 33.
    Valentin, E.C., Verbraeck, A., Sol, H.G.: Effect of simulation building blocks on simulation model development. In: Proceddings of the Internation Conference of Technology, Policy and Innovation, Pages CD-ROM Proceedings (2003)Google Scholar
  34. 34.
    Vangheluwe, H., de Lara, J.: Meta-models are models too. In: Proc. of the Winter Simulation Conference, pp. 597–605 (2002)Google Scholar
  35. 35.
    Zeigler, B.P.: Multifacetted Modelling and Discrete Event Simulation. Academic Press, London (1984)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Adelinde M. Uhrmacher
    • 1
  • Daniela Degenring
    • 1
  • Jens Lemcke
    • 1
  • Mario Krahmer
    • 1
  1. 1.Department of Computer ScienceUniversity of RostockRostockGermany

Personalised recommendations