Spatial Modeling and Simulation of Diffusion in Nuclei of Living Cells

  • Dietmar Volz
  • Martin Eigel
  • Chaitanya Athale
  • Peter Bastian
  • Harald Hermann
  • Constantin Kappel
  • Roland Eils
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3082)


The mobility of fluorescently labelled molecules in the interphase nucleus has been increasingly employed to investigate the spatial organization of the interchromosomal space. We suggest an improved two-dimensional anisotropic diffusion model to address the inhomogeneous nature of nuclear organization, which is at odds with the generally applied ’well-mixed’ compartmental assumption. To consider the transfer function of the imaging system, we derived a modified fundamental solution of the two-dimensional, time-dependent diffusion equation. The model was validated through comparison of the forward simulation results with fluorescence recovery after photobleaching experiments using nuclear localization signal (NLS) – tagged YFP recorded by confocal laser scanning microscopy. To improve the fit error in the vicinity of the nuclear boundary, we suggest an isotropic diffusion model with Neumann boundary condition accounting for the exact shape of the nuclear boundary. The suggested approach is a first step towards diffusion tomography of the cell nucleus.


Fundamental Solution Nuclear Localization Signal Spatial Modeling Fluorescence Recovery After Photobleaching Chromosome Territory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Monneron, A., Bernhard, W.: Fine structural organization of the interphase nucleus in some mammalian cells. J. Ultrastruct. Res. 27, 266–288 (1969)CrossRefGoogle Scholar
  2. 2.
    Cremer, T., Cremer, C.: Chromosome territories, nuclear architechture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001)CrossRefGoogle Scholar
  3. 3.
    Cremer, T., Kurz, A., Zirbel, R., Dietzel, S., Rinke, B., Schröck, E., Speicher, M.R., Mathieu, U., Jauch, A., Emmerich, P., Scherthan, H., Ried, T., Cremer, C., Lichter, P.: Role of chromosome territories in the functional compartmentalization of the cell nucleus. In: Cold Spring Harbour Symposia on Quantitative Biology LVIII, pp. 777–792 (1993)Google Scholar
  4. 4.
    Lamond, A.I., Earnshaw, W.C.: Structure and function in the nucleus. Science 280, 547–553 (1998)CrossRefGoogle Scholar
  5. 5.
    Misteli, T.: Cell biology of transcription and pre-mRNA splicing: nuclear architecture meets nuclear function. J. Cell Sci. 113, 1841–1849 (2000)Google Scholar
  6. 6.
    Dundr, M., Misteli, T.: Functional architecture in the cell nucleus. Biochem. J. 163, 509–517 (2001)Google Scholar
  7. 7.
    Barboro, P., D’Arrigo, C., Mormino, M., Coradeghini, R., Parodi, S., Patrone, E., Balbi, C.: An intranuclear frame for chromatin compartmentalization and higher-order folding. J. Cell Biochem. 88, 113–120 (2003)CrossRefGoogle Scholar
  8. 8.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C.: Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994)CrossRefGoogle Scholar
  9. 9.
    Misteli, T.: Protein dynamics: implications for nuclear architecture and gene expression. Science 291, 843–847 (2001)CrossRefGoogle Scholar
  10. 10.
    Phair, R.D., Misteli, T.: Kinetic modeling approaches in in vivo imaging. Nat. Rev. Mol. Cell Biol. 2, 898–907 (2001)CrossRefGoogle Scholar
  11. 11.
    Phair, R.D., Misteli, T.: High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000)CrossRefGoogle Scholar
  12. 12.
    Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., Webb, W.W.: Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics. Biophys. J. 16, 1055–1069 (1976)CrossRefGoogle Scholar
  13. 13.
    Crank, J.: The Mathematics of Diffusion. Oxford University Press, Oxford (1976)zbMATHGoogle Scholar
  14. 14.
    Weickert, J.: Anisotropic Diffusion in Image Processing, Teubner, Stuttgart (1997)Google Scholar
  15. 15.
    Hedberg, K.K., Chen, L.B.: Absence of intermediate filaments in a human adrenal cortex carcinoma-derived cell line. Exp. Cell Res. 163, 509–517 (1986)CrossRefGoogle Scholar
  16. 16.
    Reits, E.A., Neefjes, J.J.: From fixed to FRAP: measuring protein mobility and activity in living cells. Nat. Cell Biol. 3, E145–E147 (2001)CrossRefGoogle Scholar
  17. 17.
    Bastian, P., Birken, K., Lang, S., Johannsen, K., Neuß, N., Rentz-Reichert, H., Wieners, C.: UG: A flexible software toolbox for solving partial differential equations. Computing and Visualization in Science 1, 27 (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Nagorni, M., Hell, S.W.: 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. J. Struct. Biol. 123, 236–247 (1998)CrossRefGoogle Scholar
  19. 19.
    Siggia, E.D., Lippincott-Schwartz, J., Bekiranov, S.: Diffusion in Inhomogenous Media: Theory and Simulation Applied to Whole Cell Photobleach Recovery. Biophys. J. 79, 1761–1770 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dietmar Volz
    • 1
  • Martin Eigel
    • 1
  • Chaitanya Athale
    • 1
  • Peter Bastian
    • 2
  • Harald Hermann
    • 3
  • Constantin Kappel
    • 1
  • Roland Eils
    • 1
  1. 1.Div. Theoretical BioinformaticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Interdisciplinary Center of Scientific Computing (IWR)HeidelbergGermany
  3. 3.Div. Cell BiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations