On Extended Finite Element Method (XFEM) for Modelling of Organ Deformations Associated with Surgical Cuts

  • Lara M. Vigneron
  • Jacques G. Verly
  • Simon K. Warfield
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3078)


The Extended Finite Element Method (XFEM) is a technique used in fracture mechanics to predict how objects deform as cracks form and propagate through them. Here, we propose the use of XFEM to model the deformations resulting from cutting through organ tissues. We show that XFEM has the potential for being the technique of choice for modelling tissue retraction and resection during surgery. Candidates applications are surgical simulators and image-guided surgery. A key feature of XFEM is that material discontinuities through FEM meshes can be handled without mesh adaptation or remeshing, as would be required in regular FEM. As a preliminary illustration, we show the result of XFEM calculation for a simple 2D shape in which a linear cut was made.


Heaviside Function Enrichment Function Displacement Constraint Crack Geometry Mesh Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balakrishnam, A., Kacher, D.F., Slocum, A., Kemper, C., Warfield, S.K.: Smart retractor for use in image guided neurosurgery. In: 2003 Summer Bioengineering Conference, Sonesta Beach Resort in Key Biscayne, Florida, June 25-29 (2003)Google Scholar
  2. 2.
    Bielser, D., Gross, M.H.: Interactive simulation of surgical cuts. In: Pacific Graphics 2000 IEEE Computer Society Press (ed.) Proceedings of Pacific Graphics 2000, Hong Kong, China, October 2-5, pp. 116–125 (2000)Google Scholar
  3. 3.
    Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. The Visual Computer 16(8), 437–452 (2000)zbMATHCrossRefGoogle Scholar
  4. 4.
    Dolbow, J.E.: An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics, PhD Dissertation, Northwestern University (1999)Google Scholar
  5. 5.
    Ferrant, M.: Physics-based Deformable Modeling of Volumes and Surfaces for Medical Image Registration, Segmentation and Visualization. PhD thesis, Uni-versité catholique of Louvain, Telecommunications Laboratory, Louvain-la-Neuve, Belgium (April 2001)Google Scholar
  6. 6.
    Ferrant, G.M., Nabavi, A., Macq, B., Jolesz, F.A., Kikinis, R., Warfield, S.K.: Registration of 3D intraoperative MR images of the brain using a finite element biomechanical model. IEEE Trans. Medical Imaging 20(12), 1384–1397 (2001)CrossRefGoogle Scholar
  7. 7.
    Ferrant, M., Nabavi, A., Macq, B., Kikinis, R., Warfield, S.: Serial registration of intra-operative MR images of the brain. Medical Image Analysis 6, 337–359 (2002)CrossRefGoogle Scholar
  8. 8.
    Forest, C., Delingette, H., Ayache, N.: Cutting simulation of manifold volumetric meshes. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 235–244. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Ganovelli, F., Cignoni, P., Montani, C., Scopigno, R.: A multiresolution model for soft objects supporting interactive cuts and lacerations. Computer Graphics Forum 19(3), 271–282 (2000)CrossRefGoogle Scholar
  10. 10.
    Lamprich, B.K., Miga, M.I.: Analysis of model-updated MR images to correct for brain deformation due to tissue retraction. In: Medical Imaging 2003: Visualization, Image-guided Procedures and Display: Proc. of the SPIE, vol. 5029, pp. 552–560 (2003)Google Scholar
  11. 11.
    Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46, 131–150 (1999)zbMATHCrossRefGoogle Scholar
  12. 12.
    Mor, A., Kanade, T.: Modifying soft tissue models: Progressive cutting with minimal new element creation. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 598–607. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Nieuhuys, H.-W.: Cutting in deformable objects. PhD thesis, Institute for Information and Computing Sciences, Utrecht University (2003)Google Scholar
  14. 14.
    Nienhuys, H.-W., van der Stappen, A.F.: A surgery simulation supporting cuts and finite element deformation. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 153–160. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Serby, D., Harders, M., Székely, G.: A new approach to cutting into finite element models. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 425–433. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Sukumar, N., Moës, N., Belytschko, T., Moran, B.: Extended Finite Element Method for three-dimensional crack modelling. International Journal for Numerical Methods in Engineering 48(11), 1549–1570 (2000)zbMATHCrossRefGoogle Scholar
  17. 17.
    Sukumar, N., Prévost, J.-H.: Modeling Quasi-Static Crack Growth with the Extended Finite Element Method. Part I: Computer Implementation. International Journal of Sohds and Structures 40(26), 7513–7537 (2003)zbMATHCrossRefGoogle Scholar
  18. 18.
    Verly, J.G., Vigneron, L., Petitjean, N., Martin, C., Guran, R., Robe, P.: 3D nonrigid registration and multimodality fusion for image-guided neurosurgery. In: Fusion 2003, Proceedings of the 6th International Conference on Information Fusion, Cairns, Australia (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Lara M. Vigneron
    • 1
  • Jacques G. Verly
    • 1
  • Simon K. Warfield
    • 2
  1. 1.Signal Processing Group, Department of Electrical Engineering and Computer ScienceUniversity of LiègeBelgium
  2. 2.Surgical Planning LaboratoryBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations