The Price of Anarchy when Costs Are Non-separable and Asymmetric

  • G. Perakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3064)

Abstract

In this paper we characterize the “price of anarchy”, i.e., the inefficiency between user and system optimal solutions, when costs are non-separable, asymmetric and nonlinear, generalizing earlier work that has addressed “the price of anarchy” under separable costs. This generalization models traffic equilibria, competitive multi-period pricing and competitive supply chains. The bounds established in this paper are tight and explicitly account for the degree of asymmetry and nonlinearity of the cost function. We introduce an alternate proof method for providing bounds that uses ideas from semidefinite optimization. Finally, in the context of multi-period pricing our analysis establishes that user and system optimal solutions coincide.

Keywords

System and User-Optimization Traffic Equilibrium Price of Anarchy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braess, D.: Uber ein paradoxon der verkehrsplanung. Unternehmenforschung 12, 258–268 (1968)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chau, C.K., Sim, K.M.: The price of anarchy for non-atomic congestion games with symmetric cost maps and elastic demands. Operations Research Letters 31 (2003)Google Scholar
  3. 3.
    Cole, R., Dodis, Y., Roughgarden, T.: Pricing Network Edges for Heterogeneous Selfish Users. In: Conference version appeared in STOC (2003)Google Scholar
  4. 4.
    Correa, J., Schulz, A., Stier Moses, N.: Selfish Routing in Capacitated Networks. MIT Sloan Working Paper No. 4319-03. Also to appear in the IPCO Proceedings (2004)Google Scholar
  5. 5.
    Dafermos, S., Sparrow, F.T.: The traffic assignment problem for a general network. Journal of Research of the National Bureau of Standards - B 73B (1969)Google Scholar
  6. 6.
    Dafermos, S.: Toll patterns for multiclass-user transportation networks. Transportation Science, 211-223 (1973)Google Scholar
  7. 7.
    Dafermos, S.: Traffic equilibria and variational inequalities. Transportation Science 14, 42–54 (1980)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dubey, P.: Inefficiency of Nash Equilibria. Mathematics of Operations Research 11, 1–8 (1986)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I and II. Springer, Berlin (2003)Google Scholar
  10. 10.
    Florian, M., Hearn, D.: Network Equilibrium Models and Algorithms. In: Ball, M., Magnanti, T., Monma, C., Neumhauser, G. (eds.) Handbook of Operations Research and Management Science, vol. 8, Elsevier Science, B.V (1995)Google Scholar
  11. 11.
    Hammond, J.H.: Solving Asymmetric Variational Inequalities and Systems of Equations with Generalized Nonlinear Programming Algorithms. PhD Thesis, MIT (1984)Google Scholar
  12. 12.
    Hearn, D., Ramana, M.: Solving congestion toll pricing models. In: Marcotte, P., Nguyen, S. (eds.) Equilibrium and Advanced Transportation ModelingGoogle Scholar
  13. 13.
    Hearn, D., Yildirim, M.: A toll pricing framework for traffic assignment problems with elastic demand. In: Marcotte, P., Gendreau, M. (eds.) Transportation and Network Analysis - Current TrendsGoogle Scholar
  14. 14.
    Johari, R., Tsitsiklis, J.N.: Network resource allocation and a congestion game. LIDS Working Paper (2003)Google Scholar
  15. 15.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, p. 404. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Marcotte, P.: Network design problem with congestion effects: A case of bilevel programming. Mathematical Programming 34, 142–162 (1986)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Nagurney, A.: Network Economics; A Variational Inequality Approach. Kluwer Academic Publishers, Dordrecht (1993)MATHGoogle Scholar
  18. 18.
    Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, New York (1970)MATHGoogle Scholar
  19. 19.
    Perakis, G.: The “Price of Anarchy” when Costs are Non-separable and Asymmetric. Working Paper, ORC, MIT (2003) (submitted for publication)Google Scholar
  20. 20.
    Roughgarden, T.: Selfish Routing. PhD Thesis, Cornell University (2002)Google Scholar
  21. 21.
    Roughgarden, T., Tardos, E.: Bounding the Inefficiency of Equilibria in Nonatomic Congestion Games. Journal of the ACM 49(2), 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Smith, M.J.: The existence, uniqueness and stability of traffic equilibria. Transportation Research 13B, 295–304 (1979)Google Scholar
  23. 23.
    Sun, J.: A Convergence Analysis for a Convex Version of Dikin’s Algorithm. Annals of Operations Research 62, 357–374 (1996)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Wardrop, J.G.: Some Theoretical Aspects of Road Traffic Research. In: Proceedings of the Institute of Civil Engineers, Part II, pp. 325–378 (1952)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • G. Perakis
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations