A Faster Exact Separation Algorithm for Blossom Inequalities

  • Adam N. Letchford
  • Gerhard Reinelt
  • Dirk Oliver Theis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3064)


In 1982, Padberg and Rao gave a polynomial-time separation algorithm for b-matching polyhedra. The current best known implementations of their separation algorithm run in \({\cal O}(|V|^2|E| \log (|V|^2/|E|))\) time when there are no edge capacities, but in \({\cal O}(|V||E|^2 \log (|V|^2/|E|))\) time when capacities are present.

We propose a new exact separation algorithm for the capacitated case which has the same running time as for the uncapacitated case. For the sake of brevity, however, we will restrict our introduction to the case of perfect 1-capacitated b-matchings, which includes, for example, the separation problem for perfect 2-matchings. As well as being faster than the Padberg-Rao approach, our new algorithm is simpler and easier to implement.


matching polyhedra separation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caprara, A., Fischetti, M.: {0, \(\frac{1}{2}\)}-Chvátal-Gomory cuts. Math. Program 74, 221–235 (1996)MathSciNetMATHGoogle Scholar
  2. 2.
    Edmonds, J.: Maximum matching and a polyhedron with 0-1 vertices. J. Res. Nat. Bur. Standards 69B, 125–130 (1965)MathSciNetGoogle Scholar
  3. 3.
    Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. J. of the A.C.M. 35, 921–940 (1988)MATHMathSciNetGoogle Scholar
  4. 4.
    Gomory, R.E., Hu, T.C.: Multi-terminal network flows. SIAM J. Applied Math. 9, 551–570 (1961)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Grötschel, M., Holland, O.: A cutting plane algorithm for minimum perfect 2-matching. Computing 39, 327–344 (1987)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Grötschel, M., Lovász, L., Schrijver, A.J.: Geometric Algorithms and Combinatorial Optimization. Wiley, New York (1988)MATHGoogle Scholar
  7. 7.
    Grötschel, M., Padberg, M.W.: On the symmetric travelling salesman problem I: inequalities. Math. Program. 16, 265–280 (1979)MATHCrossRefGoogle Scholar
  8. 8.
    Grötschel, M., Padberg, M.W.: On the symmetric travelling salesman problem II: lifting theorems and facets. Math. Program. 16, 281–302 (1979)MATHCrossRefGoogle Scholar
  9. 9.
    Letchford, A.N., Reinelt, G., Theis, D.O.: Odd minimum cut-sets and b-matchings revisited (in preparation)Google Scholar
  10. 10.
    Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Oper. Res. 7, 67–80 (1982)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Padberg, M.W., Rinaldi, G.: Optimization of a 532-city symmetric traveling salesman problem by branch and cut. Oper. Res. Lett. 6, 1–7 (1987)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Padberg, M.W., Rinaldi, G.: Facet identification for the symmetric traveling salesman polytope. Math. Program. 47, 219–257 (1990)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Pulleyblank, W.R.: Faces of matching polyhedra. Ph.D thesis, University of Waterloo (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Adam N. Letchford
    • 1
  • Gerhard Reinelt
    • 2
  • Dirk Oliver Theis
    • 2
  1. 1.Department of Management ScienceLancaster UniversityLancasterEngland
  2. 2.Institut für InformatikUniversity of HeidelbergGermany

Personalised recommendations