LUCI: A Personalization Documentary System Based on the Analysis of the History of the User’s Actions

  • Rachid Arezki
  • Abdenour Mokrane
  • Gérard Dray
  • Pascal Poncelet
  • David W. Pearson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3055)


With the development of Internet and storage devices, online document servers abound with enormous quantities of documents from various themes. The online search of pertinent documents is a fastidious task and ”search engine” may overcome this difficulty. However, in such engines, each new document need must be formulated by a new request. Recently, new approaches were proposed to solve this problem by taking into account the user profile. However, these approaches don’t consider the evolution in time of the document classes consulted by the user. In this paper, we propose a new approach for learning the user long-term profile for textual document filtering. In this framework, the documents consulted by the user are classified in a dynamic way, then we analyze the distribution in the time of the document classes. The approach aim is to determine, as well as possible, the document classes which interest the user. We also propose a system called LUCI, which allows an online document’s personalization by using this approach. An empirical study confirms the relevance of our approach.


User Modeling Information Filtering Long-Term Adaptation and Filtering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bal97]
    Balbanovic, M.: An adaptative web page recommendation service. In: Proceeding of the First International Conference on Autonomous Agents, pp. 378–385 (1997)Google Scholar
  2. [Cha90]
    Chauché, J.: Détermination sémantique en analyse structurelle: une expérience basée sur une definition de distance. TA Information 2, 121–167 (1990)Google Scholar
  3. [CS98]
    Chen, L., Sycara, K.: Webmate: Personal agent for browsing and searching. In: Proceeding of the Second International Conference on Autonomous Agents, pp. 132–139 (1998)Google Scholar
  4. [DDL+90]
    Deerwester, S., Dumais, S., Landauer, T., Furnas, G., Harsman, R.: Indexing by latent semantic analysis. Journal of the Society for Information Science 41, 391–407 (1990)CrossRefGoogle Scholar
  5. [DN02]
    Danilowicz, C., Nguyen, H.C.: Using user profiles in intelligent information retrieval. In: Proceedings of the 13th International Symposium on Foundations of Intelligent Systems, pp. 223–231. Springer, Heidelberg (2002)Google Scholar
  6. [Lan95]
    Lang, K.: Newsweeder: Learning to filter netnews. In: Proceedings of Machine Learning Conference, pp. 331–339 (1995)Google Scholar
  7. [MBVL99]
    Martin-Bautista, M.J., Vila, M.A., Larsen, H.L.: A fuzzy genetic algorithm approach to an adaptive information retrieval agent. Journal of Americain Society for Information Science 50(9), 760–771 (1999)CrossRefGoogle Scholar
  8. [MS94]
    McElligot, M., Sorensen, H.: An evolutionary connectionist approach to personnal information filtering. In: Proceedings of the Fourth Irish Neural Network Conference, Dublin, Ireland, pp. 141–146 (1994)Google Scholar
  9. [MZ97]
    Moukas, A., Zacharia, G.: Evolving a multiagent information filtering solution in Amalthaea. In: Proceedings of the First International Conference on Autonomous Agents (Agents 1997), pp. 394–403,5–8. ACM Press, New York (1997)CrossRefGoogle Scholar
  10. [PB97]
    Pazzani, M., Billisus, D.: Learning and revising user profiles: The identification of interesting web sites. Machine Learning Journal, 313–331 (1997)Google Scholar
  11. [Sal71]
    Salton, G.: The smart retrieval system: Experiments in automatic document processing. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  12. [SG83]
    Salton, G., Mc Gill, M.J.: Introduction to modern information retrieval. McGraw-Hill, New York (1983)MATHGoogle Scholar
  13. [Sin97]
    Singhal, A.: Term weighting revisited. PhD thesis, Departement of Computer Science, Cornell University (1997)Google Scholar
  14. [SSMB95]
    Singhal, A., Salton, G., Mitra, M., Buckley, C.: Document length normalization. Technical Report, Departement of Computer Science, Cornell University (1995)Google Scholar
  15. [TT98]
    Tan, A., Teo, C.: Learning user profiles for personalized information dissemination. In: Proceedings, 1998 IEEE International Joint Conference on Neural Networks, Alaska, pp. 183–188 (1998)Google Scholar
  16. [WIY01]
    Widyantoro, D.H., Ioerger, T.R., Yen, J.: Learning user interest dynamics with a three-descriptor representation. Journal of the American Society of Information Science 52(3), 212–225 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rachid Arezki
    • 1
  • Abdenour Mokrane
    • 1
  • Gérard Dray
    • 1
  • Pascal Poncelet
    • 1
  • David W. Pearson
    • 2
  1. 1.Centre LGI2P EMASite EERIE Parc Scientifique Georges BesseNimes Cedex 1France
  2. 2.IUT de RoanneRoanneFrance

Personalised recommendations