Advertisement

S-Match: an Algorithm and an Implementation of Semantic Matching

  • Fausto Giunchiglia
  • Pavel Shvaiko
  • Mikalai Yatskevich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3053)

Abstract

We think of Match as an operator which takes two graph-like structures (e.g., conceptual hierarchies or ontologies) and produces a mapping between those nodes of the two graphs that correspond semantically to each other. Semantic matching is a novel approach where semantic correspondences are discovered by computing, and returning as a result, the semantic information implicitly or explicitly codified in the labels of nodes and arcs. In this paper we present an algorithm implementing semantic matching, and we discuss its implementation within the S-Match system. We also test S-Match against three state of the art matching systems. The results, though preliminary, look promising, in particular for what concerns precision and recall.

Keywords

Semantic Relation Schema Match Semantic Match Validity Problem Atomic Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergamaschi, S., Castano, S., Vincini, M.: Semantic Integration of Semistructured and Structured Data Sources. SIGMOD Record 28(1), 54–59 (1999)CrossRefGoogle Scholar
  2. 2.
    Do, H.H., Rahm, E.: COMA – A System for Flexible Combination of Schema Matching Approach. In: Proceedings of VLDB 2002, pp. 610–621 (2002)Google Scholar
  3. 3.
    Doan, A., Madhavan, J., Domingos, P., Halvey, A.: Learning to map between ontologies on the semantic web. In: Proceedings of WWW 2002, pp. 662–673 (2002)Google Scholar
  4. 4.
    Giunchiglia, F.: Contextual reasoning. Epistemologia, special issue on “Linguaggi e le Macchine” XVI, 345–364 (1993)Google Scholar
  5. 5.
    Giunchiglia, F., Shvaiko, P.: Semantic Matching. To appear in “The Knowledge Engineering Review” journal 18(3), Short versions: Proceedings of Ontologies and distributed systems workshop at IJCAI 2003 and Semantic Integration workshop at ISWC 2003 (2003)Google Scholar
  6. 6.
    Giunchiglia, F., Zaihrayeu, I.: Making peer databases interact - a vision for an architecture supporting data coordination. In: Klusch, M., Ossowski, S., Shehory, O. (eds.) CIA 2002. LNCS (LNAI), vol. 2446, pp. 18–35. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Giunchiglia, F., Zaihrayeu, I.: Implementing database coordination in P2P networks. Submitted to ESWS 2004 (2004)Google Scholar
  8. 8.
    Do, H.H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In: Proceedings of workshop on Web and Databases (2002)Google Scholar
  9. 9.
    Kang, J., Naughton, J.F.: On schema matching with opaque column names and data values. In: Proceedings of SIGMOD 2003, pp. 205–216 (2003)Google Scholar
  10. 10.
    Le Berre, D.: JSAT: The java satisfiability library (2001), http://cafe.newcastle.edu.au/daniel/JSAT/
  11. 11.
    Madhavan, J., Bernstein, P., Rahm, E.: Generic schema matching with Cupid. In: Proceedings of VLDB 2001, pp. 49–58 (2001)Google Scholar
  12. 12.
    Magnini, B., Serafini, L., Speranza, M.: Making Explicit the Semantics Hidden in Schema Models. In: Proceedings of workshop on Human Language Technology for the Semantic Web and Web Services at ISWC 2003 (2003)Google Scholar
  13. 13.
    Melnik, S., Rahm, E., Bernstein, P.: Rondo: A programming platform for generic model management. In: Proceedings of SIGMOD 2003, pp. 193–204 (2003)Google Scholar
  14. 14.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching Algorithm. In: Proceedings of ICDE, pp. 117–128 (2002)Google Scholar
  15. 15.
    Miller, A.G.: Wordnet: A lexical database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  16. 16.
    Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)MATHCrossRefGoogle Scholar
  17. 17.
    Serafini, L., Bouquet, P., Magnini, B., Zanobini, S.: Semantic Coordination: A new approach and an application. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 130–145. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Xu, L., Embley, D.W.: Using domain ontologies to discover direct and indirect matches for schema elements. In: Proceedings of Semantic Integration workshop at ISWC 2003 (2003)Google Scholar
  19. 19.
    Yatskevich, M.: Preliminary Evaluation of Schema Matching Systems. DIT Technical Report, DIT-03-028 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Fausto Giunchiglia
    • 1
  • Pavel Shvaiko
    • 1
  • Mikalai Yatskevich
    • 1
  1. 1.Dept. of Information and Communication TechnologyUniversity of TrentoPovo, TrentoItaly

Personalised recommendations