Semantic Annotation Support in the Absence of Consensus

  • Bertrand Sereno
  • Victoria Uren
  • Simon Buckingham Shum
  • Enrico Motta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3053)


We are interested in the annotation of knowledge which does not necessarily require a consensus. Scholarly debate is an example of such a category of knowledge where disagreement and contest are widespread and desirable, and unlike many Semantic Web approaches, we are interested in the capture and the compilation of these conflicting viewpoints and perspectives. The Scholarly Ontologies project provides the underlying formalism to represent this meta-knowledge, and we will look at ways to lighten the burden of its creation. After having described some particularities of this kind of knowledge, we introduce ClaimSpotter, our approach to support its ‘capture’, based on the elicitation of a number of recommendations which are presented for consideration to our annotators (or analysts), and give some elements of evaluation.


Digital Library Latent Semantic Analysis Retrieval Result Citation Context Scholarly Debate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Handschuh, S., Staab, S.: Authoring and Annotation of Web Pages in CREAM. In: Proceedings of the 11th International World Wide Web Conference, WWW 2002 (2002)Google Scholar
  2. 2.
    Buckingham Shum, S., Motta, E., Domingue, J.: ScholOnto: an Ontology-based Digital Library Server for Research Documents and Discourse. International Journal on Digital Libraries 3, 237–248 (2000)CrossRefGoogle Scholar
  3. 3.
    Li, G., Uren, V., Motta, E., Buckingham Shum, S., Domingue, J.: ClaiMaker: Weaving a Semantic Web of Research Papers. In: [30]Google Scholar
  4. 4.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. The Scientific American, 34–43 (2001)Google Scholar
  5. 5.
    Shipman, F.M., McCall, R.: Supporting Knowledge Base Evolution with Incremental Formalization. In: Proceedings of Human Factors in Computing Systems conference, pp. 285–291 (1994)Google Scholar
  6. 6.
    Uren, V., Sereno, B., Buckingham Shum, S., Li, G.: Interfaces for Capturing Interpretations of Research Literature. In: Proceedings of the Distributed and Collective Knowledge Capture Workshop, a part of the Knowledge Capture Conference (KCAP), FL, USA (2003)Google Scholar
  7. 7.
    Motta, E., Buckingham Shum, S., Domingue, J.: Ontology-Driven Document Enrichment: Principles, Tools and Applications. International Journal on Human Computer Studies 50, 1071–1109 (2000)CrossRefGoogle Scholar
  8. 8.
    Bishop, A.P.: Digital Libraries and Knowledge Disaggregation: the Use of Journal Article Components. In: Proceedings of the 3rd ACM International Conference on Digital Libraries (1998)Google Scholar
  9. 9.
    Börner, K.: Extracting and Visualizing Semantic Structures in Retrieval Results for Browsing. In: Proceedings of the 5th ACM International Conference on Digital Libraries (2000)Google Scholar
  10. 10.
    Swales, J.M.: Genre Analysis: English in Academic and Research Settings. Cambridge University Press, Cambridge (1990)Google Scholar
  11. 11.
    Weinstock, M.: Citation Indexes. Encyclopedia of Library and Information Science 5, 16–40 (1971)Google Scholar
  12. 12.
    Leake, D.B., Maguitman, A., Reichherzer, T., Cañas, A., Carvalho, M., Arguedas, M., Brenes, S., Eskridge, T.: Aiding Knowledge Capture by Searching for Extensions of Knowledge Models. In: Proceedings of the International Conference On Knowledge Capture (KCAP), FL, USA (2003)Google Scholar
  13. 13.
    Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to WordNet: an Online Lexical Database. Technical Report CSL 43, Cognitive Science Laboratory, Princeton University (1993)Google Scholar
  14. 14.
    Small, H.: Co-citation in the Scientific Literature: a New Measure of the Relationship Between Two Documents. Journal of the American Society for Information Science 24, 265–269 (1973)CrossRefGoogle Scholar
  15. 15.
    Teufel, S., Moens, M.: Summarizing Scientific Articles: Experiments with Relevance and Rhetorical Status. Computational Linguistics 28, 409–445 (2002)CrossRefGoogle Scholar
  16. 16.
    Hyland, K.: Persuasion and Context: the Pragmatics of Academic Metadiscourse. Journal of Pragmatics 30, 437–455 (1998)CrossRefGoogle Scholar
  17. 17.
    Teufel, S., Moens, M.: What’s Yours and What’s Mine: Determining Intellectual Attribution in Scientific Text. In: Proceedings of the 2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, Hong Kong (2000) Google Scholar
  18. 18.
    Yang, Y., Pedersen, J.O.: A Comparative Study of Feature Selection in Text Categorization. In: Proceedings of the 14th International Conference on Machine Learning, pp. 412–420. Morgan Kaufmann, San Francisco (1997)Google Scholar
  19. 19.
    Graham, J.: The Reader’s Helper: a Personalized Document Reading Environment. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI 1999 (1999)Google Scholar
  20. 20.
    Boguraev, B., Kennedy, C., Bellamy, R., Brawer, S., Wong, Y.Y., Swartz, J.: Dynamic Presentation of Document Content for Rapid On-line Skimming. In: Proceedings of the AAAI Spring 1998 Symposium on Intelligent Text Summarization (1998)Google Scholar
  21. 21.
    Carletta, J.: Assessing Agreement on Classification Tasks: the Kappa Statistic. Computational Linguistics 22, 249–254 (1996)Google Scholar
  22. 22.
    Sumner, T., Buckingham Shum, S.: From Documents to Discourse: Shifting Conceptions of Scholarly Publishing. In: Proceedings of the ACM SIGCHI 1998 Conference on Human Factors in Computing Systems, Association for Computing Machinery (1998)Google Scholar
  23. 23.
    Vargas-Vera, M., Motta, E., Domingue, J., Lanzoni, M., Stutt, A., Ciravegna, F.: MnM: Ontology Driven Semi-automatic and Automatic Support for Semantic Markup. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, p. 379. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Ovsiannikov, I., Arbib, M., McNeill, T.: Annotation Technology. International Journal on Human Computer Studies 50, 329–362 (1999)CrossRefGoogle Scholar
  25. 25.
    Gil, Y., Ratnakar, V.: Trusting Information Sources One Citizen at a Time. In: [30]Google Scholar
  26. 26.
    Miike, S., Itoh, E., Ono, K., Sumita, K.: A Full-text Retrieval System with a Dynamic Abstract Generation Function. In: Proceedings of the 17th Annual International ACM-SIGIR Conference, pp. 152–161 (1994)Google Scholar
  27. 27.
    Lawrence, S., Bollacker, K., Giles, C.L.: Indexing and Retrieval of Scientific Literature. In: Proceedings of the 8th Conference on Information and Knowledge Management (CIKM 1999), pp. 139–146 (1999)Google Scholar
  28. 28.
    Bradshaw, S., Hammond, K.: Automatically Indexing Documents: Content vs. Reference. In: Proceedings of the 6th International Conference on Intelligent User Interfaces, IUI 2002, Association for Computing Machinery (2002)Google Scholar
  29. 29.
    Nanba, H., Okumura, M.: Towards Multi-paper Summarization using Reference Information. In: Proceedings of the IJCAI 1999 Conference, pp.926–931 (1999)Google Scholar
  30. 30.
    Horrocks, I., Hendler, J. (eds.): ISWC 2002. LNCS, vol. 2342. Springer, Heidelberg (2002)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Bertrand Sereno
    • 1
  • Victoria Uren
    • 1
  • Simon Buckingham Shum
    • 1
  • Enrico Motta
    • 1
  1. 1.Knowledge Media InstituteThe Open UniversityMilton KeynesUK

Personalised recommendations