Towards On-the-Fly Ontology Construction – Focusing on Ontology Quality Improvement

  • Naoki Sugiura
  • Yoshihiro Shigeta
  • Naoki Fukuta
  • Noriaki Izumi
  • Takahira Yamaguchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3053)


In order to realize the on-the-fly ontology construction for the Semantic Web, this paper proposes DODDLE-R, a support environment for user-centered ontology development. It consists of two main parts: pre-processing part and quality improvement part. Pre-processing part generates a prototype ontology semi-automatically, and quality improvement part supports the refinement of it interactively. As we believe that careful construction of ontologies from preliminary phase is more efficient than attempting generate ontologies full-automatically (it may cause too many modification by hand), quality improvement part plays significant role in DODDLE-R. Through interactive support for improving the quality of prototype ontology, OWL-Lite level ontology, which consists of taxonomic relationships (class – sub class relationship) and non-taxonomic relationships (defined as property), is constructed efficiently.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)Google Scholar
  2. 2.
    Gruber, T.: Ontolingua: A Mechanism to Support Portable Ontologies. Version 3.0 TR, KSL (1992)Google Scholar
  3. 3.
    Heijst, G.V.: The Role of Ontologies in Knowledge Engineering. Dr.thesis, University of Amsterdam (1995)Google Scholar
  4. 4.
    Ding, Y., Foo, S.: Ontology Research and Development, Part 1 – a Review of Onlotogy. Journal of Information Science, 123–136 (2002)Google Scholar
  5. 5.
    Lassila, O., Swick, R.R.: Resource Description Framework(RDF) Model and Syntax Specification (1999),
  6. 6.
    Sugiura, N., et al.: A Domain Ontology Engineering Tool with General Ontologies and Text Corpus. In: Proceedings of the 2nd Workshop on Evaluation of Ontologybased Tools, pp. 71–82 (2003)Google Scholar
  7. 7.
    Michael, K., Smith, C.W., McGuinness, D.L.: OWL Web Ontology Language Guide (2004),
  8. 8.
    Miller, G.A.: WordNet: A Lexical Database for English, pp. 39–41. ACM, New York (1995)Google Scholar
  9. 9.
    Marti, A., Hearst, H.S.: Customizing a Lexicon to Better Suit a Computational Task. In: Corpus Processing for Lexical Acquisition, pp. 77–96 (1996)Google Scholar
  10. 10.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of VLDB Conference, pp. 487–499 (1994)Google Scholar
  11. 11.
    Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: Rdf Schema. W3C Proposed Recommendation (2003),
  12. 12.
    Izumi, N., Takeshi Morita, N.F., Yamaguchi, T.: RDF-based Meta-Model Management Environment. In: Proceedings of The 6th SANKEN (ISIR) International Symposium (2003)Google Scholar
  13. 13.
    Alder, G.: Jgraph (2003),
  14. 14.
    HP Labs: Jena Semantic Web Framework (2003),
  15. 15.
    Jeen Broekstra, A.K., Harmelen, F.V.: Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema. Towards the Semantic Web, 71–88 (2002),
  16. 16.
    Sono, K., Yamate, M.: United Nations Convention on Contracts for the International Sale of Goods. Seirin Shoin (1993)Google Scholar
  17. 17.
    Navigli, R., Velardi, P.: Automatic Adaptation of WordNet to Domains. In: Proceedings of International Workshop on Ontologies and Lexical Knowledge Bases (2002)Google Scholar
  18. 18.
    Velardi, P., Fabriani, M.M.,, P.: Using Text Processing Techniques to Automatically enrich a Domain Ontology. In: Proceedings of ACM Conf. On Formal ontologies and Information Systems (ACM FOIS), pp. 270–284 (2001)Google Scholar
  19. 19.
    Yamaguchi, T.: Constructing domain ontologies based on concept drift analysis. In: Proceedings of the IJCAI 1999 Workshop on Ontologies and Problem Solving methods(KRR5) (1999)Google Scholar
  20. 20.
    Hahn, U., Schnattingerg, K.: Toward text knowledge engineering. In: AAAI 1998 Proceedings, pp. 524–531 (1998)Google Scholar
  21. 21.
    Faure, D., Nédellec, C.: Knowledge Acquisition of Predicate Argument Structures from Technical Texts. In: Proceedings of International Conference on Knowledge Engineering and Knowledge Management (1999)Google Scholar
  22. 22.
    Maedche, A., Staab, S.: Discovering Conceptual Relations from Text. In: Proceedings of 14th European Conference on Artificial Intelligence, pp. 321–325 (2000)Google Scholar
  23. 23.
    Weka: Machine Learning Software in Java (2004),

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Naoki Sugiura
    • 1
  • Yoshihiro Shigeta
    • 1
  • Naoki Fukuta
    • 1
  • Noriaki Izumi
    • 2
  • Takahira Yamaguchi
    • 1
  1. 1.Shizuoka UniversityHamamatsu, ShizuokaJapan
  2. 2.National Institute of AISTTokyoJapan

Personalised recommendations