Discovering Hidden Groups in Communication Networks

  • Jeff Baumes
  • Mark Goldberg
  • Malik Magdon-Ismail
  • William Al Wallace
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3073)


We describe models and efficient algorithms for detecting groups (communities) functioning in communication networks which attempt to hide their functionality – hidden groups. Our results reveal the properties of the background network activity that make detection of the hidden group easy, as well as those that make it difficult.


Hide Markov Model Random Graph Random Model Communication Graph Rensselaer Polytechnic Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Magdon-Ismail, M., Goldberg, M., Wallace, W., Siebecker, D.: Locating hidden groups in communication networks using Hidden Markov Models. In: Chen, H., Miranda, R., Zeng, D.D., Demchak, C.C., Schroeder, J., Madhusudan, T. (eds.) ISI 2003. LNCS, vol. 2665, pp. 126–137. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, New york (2001)zbMATHGoogle Scholar
  3. 3.
    Janson, S., Luczak, T., Rucinski, A.: Random Graphs. Series in Discrete Mathematics and Optimization. Wiley, New york (2000)zbMATHGoogle Scholar
  4. 4.
    Monge, P., Contractor, N.: Theories of Communication Networks. Oxford University Press, Oxford (2002)Google Scholar
  5. 5.
    Goldberg, M., Horn, P., Magdon-Ismail, M., Riposo, J., Siebecker, D., Wallace, W., Yener, B.: Statistical modeling of social groups on communication networks. In: Inaugural conference of the North American Association for Computational Social and Organizational Science (NAACSOS 2003), Pittsburgh, PA (2003)Google Scholar
  6. 6.
    Siebecker, D.: A Hidden Markov Model for describing the statistical evolution of social groups over communication networks. Master’s thesis, Rensselaer Polytechnic Institute, Troy, NY 12180, Advisor: Malik Magdon-Ismail (2003)Google Scholar
  7. 7.
    Carley, K., Prietula, M. (eds.): Computational Organization Theory. Lawrence Erlbaum associates, Hillsdale (2001)Google Scholar
  8. 8.
    Carley, K., Wallace, A.: Computational organization theory: A new perspective. In: Gass, S., Harris, C. (eds.) Encyclopedia of Operations Research and Management Science, Kluwer Academic Publishers, Norwell (2001)Google Scholar
  9. 9.
    Sanil, A., Banks, D., Carley, K.: Models for evolving fixed node networks: Model fitting and model testing. Journal oF Mathematical Sociology 21, 173–196 (1996)CrossRefGoogle Scholar
  10. 10.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Reviews 45, 167–256 (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    West, D.B.: Introduction to Graph Theory. Prentice-Hall, Upper Saddle River (2001)Google Scholar
  12. 12.
    Berge, C.: Hypergraphs. North-Holland, New York (1978)Google Scholar
  13. 13.
    Erdős, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)MathSciNetGoogle Scholar
  14. 14.
    Erdős, P., Rényi, A.: On the evolution of random graphs. Maguar Tud. Acad. Mat. Kutató Int. Kozël 5, 17–61 (1960)Google Scholar
  15. 15.
    Erdős, P., Rényi, A.: On the strength of connectedness of a random graph. Acta Math. Acad. Sci. Hungar. 12, 261–267 (1961)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jeff Baumes
    • 1
  • Mark Goldberg
    • 1
  • Malik Magdon-Ismail
    • 1
  • William Al Wallace
    • 1
  1. 1.Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations