A New Enhanced Nearest Feature Space (ENFS) Classifier for Gabor Wavelets Features-Based Face Recognition

  • Jianke Zhu
  • Mang I Vai
  • Peng Un Mak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3072)


This paper proposes a new Enhanced Nearest Feature Space Classifier (ENFS) which inherits the generalization capability from Nearest Feature Space method. Additionally, estimated variance can optimize the class seperability in the sense of Bayes error, and has improve the classification power in reduced PCA subspace. Gabor wavelets representation of face images is an effective approach for both facial action recognition and face identification. Perform PCA dimensionality reduction on the downsampled Gabor Wavelets features can be effectively for face recognition. In our experiments, ENFS with proposed Gabor Wavelets Features shows very good performance, which can achieve 98.5% maximum correct recognition rate on ORL data set without any preprocessing step.


Principal Component Analysis Face Recognition Face Image Near Neighbor Gabor Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chellappa, R.W., Sirohey, S.C.L.: Human and machine recognition of faces: a survey. Proceedings of the IEEE 83, 705–741 (1995)CrossRefGoogle Scholar
  2. 2.
    Kirby, M., Sirovich, L.: Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans. PAMI 12, 103–108 (1990)Google Scholar
  3. 3.
    Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: CVPR (1991)Google Scholar
  4. 4.
    Li, S.Z., Lu, J.: Face recognition using the nearest feature line method. IEEE Trans. Neural Networks 10, 439–443 (1999)CrossRefGoogle Scholar
  5. 5.
    Chien, J.-T., Wu, C.-C.: Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE Trans. PAMI 24, 1644–1649 (2002)Google Scholar
  6. 6.
    Liu, C., Wechsler, H.: Probabilistic reasoning models for face recognition. In: CVPR (1998)Google Scholar
  7. 7.
    Liu, C., Wechsler, H.: Robust coding schemes for indexing and retrieval from large face databases. IEEE Trans. Image Processing 9, 132–137 (2000)CrossRefGoogle Scholar
  8. 8.
    OlivettiOracle Research Lab (ORL):
  9. 9.
    Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C., Wurtz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Computers 42, 300–311 (1993)CrossRefGoogle Scholar
  10. 10.
    Kim, K.I., Jung, K., Kim, H.J.: Face recognition using kernel principal component analysis. IEEE Trans. Signal Processing Letters 9, 40–42 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jianke Zhu
    • 1
  • Mang I Vai
    • 1
  • Peng Un Mak
    • 1
  1. 1.University of MacauMacauP.R. China

Personalised recommendations