What Can I Tell from Your Face?

  • Enrico Grosso
  • Massimo Tistarelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3072)


Among the many developed techniques for biometric recognition, face analysis seems to be the most promising and interesting modality. Nonetheless, there are still many open problems which need to be ”faced” as well. For example, the information conveyed by faces (in fact too much) must be selectively extracted to obtain useful hints for recognition. The choice of optimal resolution of the face within the image, face registration and facial feature extraction are still open issues. This not only requires to devise new algorithms but to determine the real potential and limitations of existing techniques. It turns out that all methods based on the same biometric measurements have the same intrinsic limitations, which can be only overcome by the adoption of a multi-modal or multi-algorithmic approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: A survey. Proceedings of the IEEE 83, 705–740 (1995)CrossRefGoogle Scholar
  2. 2.
    Sinha, P., Poggio, T.: I think I know that face.... Nature 384, 404 (1996)CrossRefGoogle Scholar
  3. 3.
    Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C.: Face recognition and gender determination. In: Proceedings Int.l Workshop on Automatic Face and Gesture Recognition, Zurich, Switzerland, pp. 92–97 (1995)Google Scholar
  4. 4.
    Jain, A.K., Bolle, R., Pankanti, S.: Biometrics, Personal Identification in Networked Society. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  5. 5.
    Wechsler, H., Phillips, J.P., Bruce, V., Soulie, F., Huang, T. (eds.): Face Recognition. From Theory to Applications. NATO ASI Series F, vol. 163. Springer, Heidelberg (1998)MATHGoogle Scholar
  6. 6.
    Cottrell, G., Metcalfe, J.: Face, gender and emotion recognition using holons. In: Touretzky, D. (ed.) Advances in Neural Information Processing Systems, vol. 3, pp. 564–571. Morgan Kaufmann, San Mateo (1991)Google Scholar
  7. 7.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. on PAMI 19(7), 711–720 (1997)Google Scholar
  8. 8.
    Edwards, G.J., Cootes, T.F., Taylor, C.J.: Face Recognition Using Active Appearance Models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 581–595. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Liu, C., Wechsler, H.: Evolutionary pursuit and its application to face recognition. IEEE Trans. on PAMI 22(6), 570–582 (2000)Google Scholar
  10. 10.
    Tistarelli, M., Grosso, E.: Active vision-based face authentication. Image and Vision Computing: Special issue on FIA, M. Tistarelli (ed.) 18(4), 299–314 (2000)Google Scholar
  11. 11.
    Darwin, C.: The expression of the emotions in man and animals. John Murray, London (1965) (Original work published in 1872)Google Scholar
  12. 12.
    Goren, C., Sarty, M., Wu, P.: Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56, 544–549 (1975)Google Scholar
  13. 13.
    Picard, R.W.: Toward computers that recognize and respond to user emotion. IBM System 39(3/4) (2000)Google Scholar
  14. 14.
    Ballard, D.H.: Animate vision. Artificial Intelligence 48, 57–86 (1991)CrossRefGoogle Scholar
  15. 15.
    Aloimonos, Y. (ed.): Purposive, qualitative, active vision. CVGIP: Image Understanding (special issue on qualitative, active vision), vol. 56 (1992)Google Scholar
  16. 16.
    Tistarelli, M.: Active/space-variant object recognition. Image and Vision Computing 13(3), 215–226 (1995)CrossRefGoogle Scholar
  17. 17.
    Schwartz, E.L., Greve, D.N., Bonmassar, G.: Space-variant active vision: definition, overview and examples. Neural Networks 8(7/8), 1297–1308 (1995)CrossRefGoogle Scholar
  18. 18.
    Tistarelli, M., Lagorio, A., Grosso, E.: Understanding Iconic Image-Based Face Biometrics. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, pp. 19–29. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Grother, P.J.: Cross validation comparison of NIST ocr databases. In: Proceedings of the SPIE, vol. 1906, pp. 296–307 (1993)Google Scholar
  20. 20.
    Samaria, F., Harter, A.: Parameterisation of a Stochastic Model for Human Face Identification. In: Proceedings of 2nd IEEE Workshop on Applications of Computer Vision, Sarasota, FL, IEEE Computer Society Press, Los Alamitos (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Enrico Grosso
    • 1
  • Massimo Tistarelli
    • 1
  1. 1.Computer Vision LaboratoriUniversity of SassariAlghero (SS)Italy

Personalised recommendations