Advertisement

Definition of Postural Schemes for Humanoid Robots

  • Telmo Zarraonandia
  • Javier de Lope
  • Darío Maravall
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3040)

Abstract

Each of the positions to be adopted by a humanoid robot to make a particular movement can be considered as a postural scheme associated with that particular movement. For example, if we want the robot to complete a given step sequence, the robot should increase or decrease the positions of its links to arrive at the desired position, whilst maintaining its stability. Other possible examples of movement execution are sideways movement, walking upstairs, etc. In this paper, we propose a method for defining postural schemes that guarantee stability in all the intermediate positions of the movements. This method is based on the direct kinematics of the robot.

Keywords

Humanoid Robot Inverse Kinematic Biped Robot Zero Moment Point Roll Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kaminka, G., Lima, P., Rojas, R. (eds.): RoboCup 2002. LNCS (LNAI), vol. 2752. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  2. 2.
    Vukobratovic, M., Brovac, B., Surla, D., Sotkic, D.: Biped Locomotion. Springer, Berlin (1990)zbMATHGoogle Scholar
  3. 3.
    Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., Tanie, K.: Planning walking patterns for a biped robot. IEEE Trans. on Robotics and Automation 17(3), 280–289 (2001)CrossRefGoogle Scholar
  4. 4.
    Furuta, T., Tawara, T., Okumura, Y., Shimizu, M., Tomiyama, K.: Design and construction of a series of compact humanoid robots and development of biped walk control strategies. Robotics and Autonomous Systems 37(2–3), 81–100 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Linares-Barranco, B., Andreou, A.G., Indiveri, G., Shibata, T.: Special issue on neural networks hardware implementations. IEEE Trans. on Neural Networks 14(5), 976–979 (2003)CrossRefGoogle Scholar
  6. 6.
    De Lope, J., Zarraonandia, T., González-Careaga, R., Maravall, D.: Solving the inverse kinematics in humanoid robots: A neural approach. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 177–184. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    De Lope, J., González-Careaga, R., Zarraonandia, T., Maravall, D.: Inverse kinematics for humanoid robots using artificial neural networks. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 448–459. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Telmo Zarraonandia
    • 1
  • Javier de Lope
    • 1
  • Darío Maravall
    • 1
  1. 1.Department of Artificial Intelligence, Faculty of Computer ScienceUniversidad Politécnica de Madrid, Campus de MontegancedoMadridSpain

Personalised recommendations