Computing Theta-Stable Parabolic Subalgebras Using LiE

  • Alfred G. Noël
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3039)


This paper describes an algorithm for computing representatives of conjugacy classes of θ-stable parabolic subalgebras of a semisimple complex Lie algebra g c| relative to any of its non-compact real forms g of inner type. These subalgebras are important for studying representations of g.




  1. 1.
    Vogan Jr., D.: The algebraic structure of the representation of semisimple Lie groups I. Annals of Math. 109, 1–60 (1979)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Van Leeuwen, M.A.A., Cohen, A.M., Lisser, B.: LiE A package for Lie Group Computations. Computer Algebra Nederland, Amsterdam (1992)Google Scholar
  3. 3.
    Noël, A.G.: Appendix to “Richardson Orbits for Real Classical Groups” by Peter E. Trapa (Counterexamples in F4). To appear in Journal of AlgebraGoogle Scholar
  4. 4.
    Noël, A.G.: Some remarks on Richardson Orbits in Complex Symmetric Spaces (preprint)Google Scholar
  5. 5.
    Noël, A.G.: Computing maximal tori using LiE and Mathematica. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 728–736. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Reingold, E.M., Nievergelt, J., Deo, N.: Combinatorial Algorithms Theory and Practice. Prentice-Hall, Englewood Cliffs (1977)Google Scholar
  7. 7.
    Knapp, A.W.: Lie Groups Beyond and introduction, 2nd edn. Birkhaüser Progress in Mathematics, vol. 140 (2002)Google Scholar
  8. 8.
    Trapa, P.E.: Richardson Orbits for Real Classical Groups. To appear in Journal of AlgebraGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alfred G. Noël
    • 1
    • 2
  1. 1.Department of MathematicsThe University of MassachusettsBostonUSA
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations