Recognizing and Predicting Agent Behavior with Case Based Reasoning

  • Jan Wendler
  • Joscha Bach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3020)

Abstract

Case Based Reasoning is a feasible approach for recognizing and predicting behavior of agents within the RoboCup domain. Using the method described here, on average 98.4 percent of all situations within a game of virtual robotic soccer have been successfully classified as part of a behavior pattern. Based on the assumption that similar triggering situations lead to similar behavior patterns, a prediction accuracy of up to 0.54 was possible, compared to 0.17 corresponding to random guessing. Significant differences are visible between different teams, which is dependent on the strategic approaches of these teams.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    André, E., Herzog, G., Rist, T.: Generating Multimedia Presentations for RoboCup SoccerGames. In: Kitano, H. (ed.) RoboCup 1997. LNCS, vol. 1395. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Frank, I., Tanaka-Ishii, K., Arai, K., Matsubara, H.: The Statistics Proxy Server. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 199–204. Springer, Heidelberg (2000)Google Scholar
  3. 3.
    Gugenberger, P., Wendler, J., Schröter, K., Burkhard, H.-D.: AT Humboldt in RoboCup-98. In: Asada, M., Kitano, H. (eds.) RoboCup 1998. LNCS (LNAI), vol. 1604, pp. 358–363. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Kitano, H., Kuniyoshi, Y., Noda, I., Asada, M., Matsubara, H., Osawa, E.: RoboCup: A Challenge for AI. Artificial Intelligence Magazine 18(1), 73–85 (1997)Google Scholar
  5. 5.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  6. 6.
    Lenz, M., Bartsch-Spörl, B., Burkhard, H.D., Wess, S.: Case-Based Reasoning Technology. LNCS (LNAI), vol. 1400. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Matsubara, H., Frank, I., Tanaka-Ishii, K., Noda, I., Nakashima, H., Hasida, K.: Automatic Soccer Commentary and RoboCup. In: Asada, M., Kitano, H. (eds.) RoboCup 1998. LNCS (LNAI), vol. 1604, pp. 34–49. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Miene, A., Visser, U.: Interpretation of spatio-temporal relations in real-time and dynamic environments. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, p. 441. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Müller, U.T.: Beschreiben und Erkennen von Verhaltensmustern beim simulierten Fußballspiel. Diploma thesis, Humboldt Universität zu Berlin, Germany (2002)Google Scholar
  10. 10.
    Müller-Gugenberger, P., Wendler, J.: AT Humboldt 1998 – Design, Implementierung und Evaluierung eines Multiagentensystems für den RoboCup 1998 mittels einer BDI-Architektur. Diploma thesis, Humboldt Universität zu Berlin (1998)Google Scholar
  11. 11.
    Noda, I., Matsubara, H., Hiraki, K., Frank, I.: Soccer Server: A tool for research on multiagent systems. Applied Artificial Intelligence 12, 233–250 (1998)CrossRefGoogle Scholar
  12. 12.
    Raines, T., Tambe, M., Marsella, S.: Automated Assistants to Aid Humans in Understanding Team Behaviors. In: Veloso, M.M., Pagello, E., Kitano, H. (eds.) RoboCup 1999. LNCS (LNAI), vol. 1856, pp. 85–102. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Riley, P., Veloso, M.: Planning for Distributed Execution Through Use of Probabilistic Opponent Models. In: IJCAI-2001 Workshop PRO-2: Planning under Uncertainty and Incomplete Information (2001)Google Scholar
  14. 14.
    Voelz, D., Andre, E., Herzog, G., Rist, T.: Rocco: A RoboCup Soccer Commentator System. In: Asada, M., Kitano, H. (eds.) RoboCup 1998. LNCS (LNAI), vol. 1604, pp. 50–60. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Wendler, J.: Automatisches Modellieren von Agenten-Verhalten – Erkennen, Verstehen und Vorhersagen von Verhalten in komplexen Multi-Agenten-Systemen. PhD thesis, Humboldt Universität zu Berlin, Germany (February 2003)Google Scholar
  16. 16.
    Wendler, J., Bach, J.: Case based behavior assessment in simulated robotic soccer. In: Burkhard, G.L.H.D., Uthmann, T. (eds.) Modellierung und Simulation menschlichen Verhaltens. Informatik-Berichte, vol. 163, pp. 134–147. Humboldt-Universität zu Berlin (2003)Google Scholar
  17. 17.
    Wendler, J., Kaminka, G.A., Veloso, M.: Automatically Improving Team Cooperation by Applying Coordination Models. In: Bell, B., Santos, E. (eds.) 2001 AAAI Fall Symposium Series, Symposium: Intent Inference for Collaborative Tasks, Menlo Park CA, pp. 84–90. AAAI Press / The MIT Press (2001)Google Scholar
  18. 18.
    Wünstel, M., Polani, D., Uthmann, T., Perl, J.: Behavior Classification with Self- Organizing Maps. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, p. 108. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jan Wendler
    • 1
  • Joscha Bach
    • 2
  1. 1.Zuse Institute BerlinBerlinGermany
  2. 2.Institut für InformatikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations