Advertisement

ICEBERG : An Involutional Cipher Efficient for Block Encryption in Reconfigurable Hardware

  • Francois-Xavier Standaert
  • Gilles Piret
  • Gael Rouvroy
  • Jean-Jacques Quisquater
  • Jean-Didier Legat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3017)

Abstract

We present a fast involutional block cipher optimized for reconfigurable hardware implementations. ICEBERG uses 64-bit text blocks and 128-bit keys. All components are involutional and allow very efficient combinations of encryption/decryption. Hardware implementations of ICEBERG allow to change the key at every clock cycle without any performance loss and its round keys are derived “on-the-fly” in encryption and decryption modes (no storage of round keys is needed). The resulting design offers better hardware efficiency than other recent 128-key-bit block ciphers. Resistance against side-channel cryptanalysis was also considered as a design criteria for ICEBERG.

Keywords

block cipher design efficient implementations reconfigurable hardware side-channel resistance 

References

  1. 1.
  2. 2.
    Daemen, J., Rijmen, V.: The Block Cipher Rijndael. In: Schneier, B., Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 288–296. Springer, Heidelberg (2000)Google Scholar
  3. 3.
    Barreto, P., Rijmen, V.: The KHAZAD Legacy-Level Block Cipher, Submission to NESSIE project, available from http://www.cosic.esat.kuleuven.ac.be/nessie/
  4. 4.
    Matsui, M.: Supporting Document of MISTY1, Submission to NESSIE project, available from http://www.cosic.esat.kuleuven.ac.be/nessie/
  5. 5.
    Xilinx: Virtex 2 FPGAs Data Sheet, http://www.xilinx.com
  6. 6.
    Altera: Stratix 1.5V FPGAs Data Sheet, http://www.altera.com
  7. 7.
    McLoone, M., McCanny, J.V.: High Performance Single Ship FPGA Rijndael Algorithm Implementations. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 65–76. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Fischer, V., Drutarovsky, M.: Two Methods of Rijndael Implementation in Reconfigurable Hardware. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 65–76. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Satoh, A., et al.: A Compact Rijndael Hardware Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Helion Technology. High Performance AES (Rijndael) Cores for XILINX FPGA, http://www.heliontech.com
  11. 11.
    Standaert, F.X., Rouvroy, G., Quisquater, J.J., Legat, J.D.: Efficient FPGA Implementations of Block Ciphers KHAZAD and MISTY1. In: The proceedings of the Third NESSIE Workshop, Munich, Germany, November 6-7 (2002)Google Scholar
  12. 12.
    Standaert, F.X., Rouvroy, G., Quisquater, J.J., Legat, J.D.: A Methodology to Implement Block Ciphers in Reconfigurable Hardware and its Application to Fast and Compact AES Rijndael. In: The proceedings of FPGA 2003: the Field Programmable Logic Array Conference, Monterey, California, February 23-25 (2003)Google Scholar
  13. 13.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems (Extended abstract). In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1990)Google Scholar
  14. 14.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1993)Google Scholar
  15. 15.
    Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Biham, E., Dunkelman, O., Keller, N.: The rectangle Attack - Rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Kaliski, B.S., Robshaw, M.J.B.: Linear Cryptanalysis using Multiple Approximations. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidelberg (1994)Google Scholar
  18. 18.
    Knudsen, L., Robshaw, M.J.B.: Non-Linear Approximations in Linear Cryptanalysis. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 224–236. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    Daemen, J., Knudsen, L., Rijmen, V.: The Block Cipher SQUARE. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  20. 20.
    Ferguson, N., Kelsey, J., Lucks, S., et al.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Knudsen, L.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)Google Scholar
  22. 22.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)Google Scholar
  23. 23.
    Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA, Khufu, and Khafre. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Jakobsen, T., Knudsen, L.: The Interpolation Attack on Block Ciphers. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 28–40. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  25. 25.
    Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  27. 27.
    Biham, E.: New Type of Cryptanalytic Attacks Using Related Key. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 229–246. Springer, Heidelberg (1994)Google Scholar
  28. 28.
    Kelsey, J., Schneier, B., Wagner, D.: Related-Key Cryptanalysis of 3-WAY, Biham- DES, CAST, DES-X, NewDES, RC2, and TEA. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)Google Scholar
  29. 29.
    Biryukov, A.: Analysis of Involutional Ciphers: Khazad and Anubis. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 45–53. Springer, Heidelberg (2003) (to appear)CrossRefGoogle Scholar
  30. 30.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)Google Scholar
  31. 31.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis: The Duplication Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  32. 32.
    Chari, S., et al.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)Google Scholar
  33. 33.
    Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  34. 34.
    Pfitzmann, A., Aβmann, R.: More Efficient Software Implementations of (Generalized) DES, Institut fur Rechnerent und Fehlertoleranz, Univ. Karlsruhe, Interner Bericht 18/90Google Scholar
  35. 35.
    Biham, E.: A Fast New DES Implementation in Software, Technion - Computer Science Department, Technical Report CS0891 - (1997)Google Scholar
  36. 36.
    Youssef, A.M., Tavares, S.E., Heys, H.: A New Class of Substitution-Permutation Networks. In: Proceedings of Selected Areas in Cryptography (SAC 1996), pp. 132-147 (1996)Google Scholar
  37. 37.
    Heys, H.M., Tavares, S.E.: Known Plaintext Cryptanalysis of Tree-Structured Block Ciphers. Electronics Letters 31, 784–785 (1995)CrossRefGoogle Scholar
  38. 38.
    Knudsen, L.: Block Ciphers - Analysis, Design and Applications. Doctoral Dissertation, DAIMI PB 485, Aarhus University, Denmark (1994)Google Scholar
  39. 39.
    Daemen, J.: Cipher and Hash Function Design. Doctoral Dissertation, KULeuven (March 1995)Google Scholar
  40. 40.
    Rijmen, V.: Cryptanalysis and Design of Iterated Block Ciphers. Doctoral Dissertation, KULeuven (October 1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Francois-Xavier Standaert
    • 1
  • Gilles Piret
    • 1
  • Gael Rouvroy
    • 1
  • Jean-Jacques Quisquater
    • 1
  • Jean-Didier Legat
    • 1
  1. 1.UCL Crypto Group, Laboratoire de Microelectronique, Universite Catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations