Implementing Industrial Multi-agent Systems Using JACKTM

  • Rick Evertsz
  • Martyn Fletcher
  • Richard Jones
  • Jacquie Jarvis
  • James Brusey
  • Sandy Dance
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3067)


JACKTM is an implementation of the Belief/Desire/Intention model of rational agency with extensions to support the design and execution of agent systems where team structures, real-time control, repeatability and linkage with legacy code are critical. This chapter presents the JACKTM multi-agent systems platform. The chapter begins with a discussion of agent programming concepts as they relate to JACKTM, and then presents experiences from the development of two industrial applications that made use of JACKTM (a meteorological alerting environment and a responsive manufacturing set-up).


MultiAgents System Docking Station Electronic Product Code Agent Orient Software Order Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    d’Inverno, M., Kinny, D., Luck, M., Wooldridge, M.: A formal specification of dmars. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 155–176. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Proceedings of the First International Conference on Multi-Agent Systems (ICMAS 1995), pp. 312–319. AAAI Press, Menlo Park (1995)Google Scholar
  3. 3.
    Wooldridge, M.: Reasoning about Rational Agents. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  4. 4.
    Agent Oriented Software: Human variability in computer generated forces (HV-CGF) (2003),
  5. 5.
    Dance, S., Gorman, M.: Intelligent agents in the Australian Bureau of Meteorology. In: Challenges in Open Agent Systems Workshop, in Autonomous Agents and MultiAgents Systems (AAMAS 2002), Bologna, Italy (2002)Google Scholar
  6. 6.
    Jarvis, D., Jarvis, J., Lucas, A., Rönnquist, R., McFarlane, D.C.: Implementing a multi-agent system approach to collaborative autonomous manufacturing operations. In: Proceedings of IEEE International Conference on Systems Man and Cybernetics (2001)Google Scholar
  7. 7.
    Ljungberg, M., Lucas, A.: The OASIS air-traffic management system. In: Proceedings of the Second Pacific Rim International Conference on Artificial Intelligence, PRICAI 1992, Seoul, Korea (1992)Google Scholar
  8. 8.
    Bratman, M.E.: Intention, Plans, and Practical Reasoning. Harvard University Press, Cambridge (1987)Google Scholar
  9. 9.
    Georgeff, M.P., Ingrand, F.F.: Monitoring and control of spacecraft systems using procedural reasoning. In: Proceedings of the Space Operations Automation and Robotics Workshop, Melbourne, Australia (1989)Google Scholar
  10. 10.
    Murray, G., Steuart, S., Appla, D., McIlroy, D., Heinze, C., Cross, M., Chandran, A., Raszka, R., Rao, A.S., Pegler, A., Morley, D., Busetta, P.: The challenge of whole air mission modelling. In: Proceedings of Australian Joint Conference on Artificial Intelligence AI 1995, Melbourne, Australia (1995)Google Scholar
  11. 11.
    Lucas, A., Rönnquist, R., Ljungberg, M., Howden, N., Corke, P., Sikka, P.: Teamed UAVs – a new approach with intelligent agents. In: 2nd AIAA ”Unmanned Unlimited” Systems, Technologies, and Operations – Aerospace, Land, and Sea Conference (2003)Google Scholar
  12. 12.
    Fikes, R., Nilsson, N.: Strips: A new approach to the application of theorem proving to problem solving. Artificial Intelligence 2, 189–208 (1971)zbMATHCrossRefGoogle Scholar
  13. 13.
    Bratman, M.E., Isreal, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning. Computational Intelligence 4 (1988)Google Scholar
  14. 14.
    Georgeff, M.P., Lansky, A.L.: Procedural knowledge. In: Proceedings of the IEEE Special Issue on Knowledge Representation, vol. 74, pp. 1383–1398 (1986)Google Scholar
  15. 15.
    Agent Oriented Software: JackTM manual (2003),
  16. 16.
    Ingrand, F.F.: C-PRS Development Environment (Version 1.4.0). ACS Technologies, Labege Cedex, France (1994)Google Scholar
  17. 17.
    Bussmann, S., Sieverding, J.: Holonic control of an engine assembly plant – an industrial evaluation. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 169–174. Springer, Berlin (2001)Google Scholar
  18. 18.
    Koestler, A.: The Ghost in the Machine. Arkana (1967)Google Scholar
  19. 19.
    Mařík, V., Fletcher, M., Pěchouček, M.: Holons and agents: Recent developments and mutual impacts. In: Mařík, V., Štěpánková, O., Krautwurmová, H., Luck, M. (eds.) ACAI 2001, EASSS 2001, AEMAS 2001, and HoloMAS 2001. LNCS (LNAI), vol. 2322, p. 233. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Sarma, S., Brock, D.L., Ashton, K.: The networked physical world – proposals for engineering the next generation of computing, commerce and automatic identification. Technical Report MIT-AUTOID-WH-001, MIT Auto-ID Center (2000)Google Scholar
  21. 21.
    Suda, H.: Future factory system in Japan. Journal of Advanced Automation Technology 1 (1989)Google Scholar
  22. 22.
    Brussel, H.V., Bongaerts, L., Wyns, J., Valckenaers, P., Ginderachter, T.A.V.: Conceptual framework for holonic manufacturing: Identification of manufacturing holons. Journal of Manufacturing Systems 18 (1999)Google Scholar
  23. 23.
    Vrba, P., Hrdonka, V.: Material handling problem: FIPA compliant agent implementation. In: Proceedings of the Twelfth International Workshop on Distributed and Expert Systems Applications DEXA, pp. 635–639 (2001)Google Scholar
  24. 24.
    Chirn, J.L., McFarlane, D.C.: Building holonic systems in today’s factories: A migration strategy. Journal of Applied System Studies 2 (2000), special issue on Holonic and Multi-Agent SystemsGoogle Scholar
  25. 25.
    Beck, K., Cunningham, W.: A laboratory for teaching object-oriented thinking. SIGPLAN Notices 24 (1989)Google Scholar
  26. 26.
    Kärkkäinen, M., Holmström, J., Främling, K., Artto, K.: Intelligent products – a step towards a more effective project delivery chain. Computers In Industry 50, 141–151 (2003)CrossRefGoogle Scholar
  27. 27.
    Brusey, J., Fletcher, M., Harrison, M., Thorne, A., Hodges, S., McFarlane, D.: Auto-id based control demonstration phase 2: Pick and place packing with holonic control. Technical Report CAM-AUTOID-WH-011, Auto-ID Center (2003),
  28. 28.
    Dance, S., Gorman, M., Padgham, L., Winikoff, M.: A deployed multi agent system for meteorological alerts. In: Deployed Applications of Autonomous Agents and Multiagent Systems Workshop, AAMAS 2003, Melbourne, Australia, pp. 19–26 (2003)Google Scholar
  29. 29.
    Mathieson, I., Dance, S., Padgham, L., Gorman, M., Winikoff, M.: An open meteorological alerting system: issues and solutions. In: Estivill-Castro, V. (ed.) Proceedings of the 27th Australasian Computer Science Conference. Conferences in Research and Practice in Information Technology, vol. 26, The University of Otago, Dunedin (2004) (to appear)Google Scholar
  30. 30.
    Dance, S., Potts, R.: Microburst detection using agent networks. Journal of Atmospheric and Oceanic Technology 19, 646–653 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rick Evertsz
    • 1
  • Martyn Fletcher
    • 1
  • Richard Jones
    • 1
  • Jacquie Jarvis
    • 1
  • James Brusey
    • 2
  • Sandy Dance
    • 3
  1. 1.Agent Oriented Software Pty. Ltd. (AOS)MelbourneAustralia
  2. 2.Institute for ManufacturingUniversity of CambridgeCambridgeUnited Kingdom
  3. 3.Bureau of Meteorology Research CentreMelbourneAustralia

Personalised recommendations