On the Evolution of Rough Set Exploration System

  • Jan G. Bazan
  • Marcin S. Szczuka
  • Arkadiusz Wojna
  • Marcin Wojnarski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3066)


We present the next version (ver. 2.1) of the Rough Set Exploration System – a software tool featuring a library of methods and a graphical user interface supporting variety of rough-set-based and related computations. Methods, features and abilities of the implemented software are discussed and illustrated with examples in data analysis and decision support.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazan, J.: A Comparison of Dynamic and non-Dynamic Rough Set Methods for Extracting Laws from Decision Tables. In: [13], vol. 1, pp. 321–365Google Scholar
  2. 2.
    Bazan, J.G., Nguyen, S.H., Nguyen, H.S., Synak, P., Wróblewski, J.: Rough Set Algorithms in Classification Problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 49–88. Physica-Verlag, Heidelberg (2000)Google Scholar
  3. 3.
    Bazan, J., Szczuka, M.: RSES and RSESlib - A Collection of Tools for Rough Set Computations. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 106–113. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bazan, J., Szczuka, M., Wróblewski, J.: A New Version of Rough Set Exploration System. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 397–404. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Domingos, P.: Unifying Instance-Based and Rule-Based Induction. Machine Learning 24(2), 141–168 (1996)MathSciNetGoogle Scholar
  6. 6.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)MATHGoogle Scholar
  7. 7.
    Góra, G., Wojna, A.G.: RIONA: a New Classification System Combining Rule Induction and Instance-Based Learning. Fundamenta Informaticae 51(4), 369–390 (2002)MATHMathSciNetGoogle Scholar
  8. 8.
    Grzymała-Busse, J.: A New Version of the Rule Induction System LERS. Fundamenta Informaticae 31(1), 27–39 (1997)MATHGoogle Scholar
  9. 9.
    Grzymał-Busse, J., Hu, M.: A Comparison of Several Approaches to Missing Attribute Values in Data Mining. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 340–347. Springer, Heidelberg (2001)Google Scholar
  10. 10.
    Hoa, N.S., Son, N.H.: Discretization Methods in Data Mining. In: [13], vol.1, pp. 451-482Google Scholar
  11. 11.
    Nguyen, H.S.: Skowron, A., Synak, P.: Discovery of Data Patterns with Applications to Decomposition and Classfification Problems. In: [13], vol.2, pp. 55-97Google Scholar
  12. 12.
    Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning, Neural and Statistical Classification. Ellis Horwood, London (1994)MATHGoogle Scholar
  13. 13.
    Skowron, A., Polkowski, L. (eds.): Rough Sets in Knowledge Discovery, vol. 1 and 2. Physica-Verlag, Heidelberg (1998)Google Scholar
  14. 14.
    Ślȩzak, D., Wróblewski, J.: Classification Algorithms Based on Linear Combinations of Features. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 548–553. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Wojna, A.G.: Center-Based Indexing in Vector and Metric Spaces. Fundamenta Informaticae 56(3), 285–310 (2003)MATHMathSciNetGoogle Scholar
  16. 16.
    Wojnarski, M.: LTF-C: Architecture, Training Algorithm and Applications of New Neural Classifier. Fundamenta Informaticae 54(1), 89–105 (2003)MATHMathSciNetGoogle Scholar
  17. 17.
    Wróblewski, J.: Covering with Reducts - A Fast Algorithm for Rule Generation. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 402–407. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Bazan, J., Szczuka, M.: The RSES Homepage, http://logic.mimuw.edu.pl/~rses
  19. 19.
    Ørn, A.: The ROSETTA Homepage, http://www.idi.ntnu.no/~aleks/rosetta
  20. 20.
    Report from EUNITE World competition in domain of Intelligent Technologies, http://www.eunite.org/eunite/events/eunite2002/competitionreport2002.htm
  21. 21.
    Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. University of California, Irvine (1998), http://www.ics.uci.edu/~mlearn Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jan G. Bazan
    • 1
  • Marcin S. Szczuka
    • 2
  • Arkadiusz Wojna
    • 2
  • Marcin Wojnarski
    • 2
  1. 1.Institute of MathematicsUniversity of RzeszówRzeszówPoland
  2. 2.Faculty of Mathematics, Informatics and MechanicsWarsaw UniversityWarsawPoland

Personalised recommendations