Harnessing Classifier Networks – Towards Hierarchical Concept Construction

  • Dominik Ślezak
  • Marcin S. Szczuka
  • Jakub Wróblewski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3066)


The process of construction and tuning of classifier networks is discussed. The idea of relating the basic inputs with the target classification concepts via the internal layers of intermediate concepts is explored. Intuitions and relationships to other approaches, as well as the illustrative examples are provided.


Concept Mapping Concept Space Decision Class Weighted Decision Intermediate Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dietterich, T.: Machine learning research: four current directions. AI Magazine 18/4, 97–136 (1997)Google Scholar
  2. 2.
    Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley, New York (1990)Google Scholar
  3. 3.
    le Cun, Y.: A theoretical framework for backpropagation. In: Neural Networks – concepts and theory, IEEE Computer Society Press, Los Alamitos (1992)Google Scholar
  4. 4.
    Lenz, M., Bartsch-Spoerl, B., Burkhard, H.-D., Wess, S. (eds.): Case-Based Reasoning Technology. LNCS (LNAI), vol. 1400. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Peters, J., Szczuka, M.: Rough neurocomputing: a survey of basic models of neurocomputation. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 309–315. Springer, Heidelberg (2002)Google Scholar
  6. 6.
    Polkowski, L., Skowron, A.: Rough Mereology in Information systems. A Case Study: Qualitative Spatial Reasoning. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, Physica-Verlag, Heidelberg (2000)Google Scholar
  7. 7.
    Ślȩzak, D.: Normalized decision functions and measures for inconsistent decision tables analysis. Fundamenta Informaticae 44/3, 291–319 (2000)Google Scholar
  8. 8.
    Ślȩzak, D., Wróblewski, J., Szczuka, M.: Constructing Extensions of Bayesian Classifiers with use of Normalizing Neural Networks. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 408–416. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Stone, P.: Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer. MIT Press, Cambridge (2000)Google Scholar
  10. 10.
    Wróblewski, J.: Adaptive aspects of combining approximation spaces. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, pp. 139–156. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dominik Ślezak
    • 1
    • 2
  • Marcin S. Szczuka
    • 3
  • Jakub Wróblewski
    • 2
  1. 1.Department of Computer ScienceUniversity of ReginaReginaCanada
  2. 2.Polish-Japanese Institute of Information TechnologyWarsawPoland
  3. 3.Institute of MathematicsWarsaw UniversityWarsawPoland

Personalised recommendations